library(tidyverse)
library(easystats)
library(patchwork)
library(ggside)
library(ggdist)
df <- read.csv("../data/data_participants.csv")
dftask <- read.csv("../data/data_task.csv") |>
mutate(Condition = fct_relevel(Condition, "Human Original", "Human Forgery", "AI-Generated"))
cols <- c(
# Condition
"Human Original" = "#F51D56",
"Human Forgery" = "#F5A41D",
"AI-Generated" = "#1D9AF5",
"AI Original" = "#1D9AF5",
"AI Copy" = "#4CAF50",
"Not recognized" = "#607D8B",
# Style
"Abstract and Avant-garde" = "#E41A1C",
"Classical" = "#377EB8",
"Impressionist and Expressionist" = "#4DAF4A",
"Romantic and Realism" = "#FF7F00"
)FakeArt - Data Analysis
Data Preparation
Stimuli Selection
Code
fig_stimselection <- png::readPNG("../experiment/stimuli/stimuli_selection/stimuli_selection_files/figure-html/unnamed-chunk-10-1.png") |>
grid::rasterGrob(interpolate=TRUE) |>
patchwork::wrap_elements()
fig_stimselection
Effect of Condition
Beauty
Code
make_plot <- function(p, outcome = "Beauty", x_title = NULL, alpha_title=NULL) {
p <- p + theme_minimal()
if (outcome %in% c("Beauty", "Beauty2")) {
if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
ybreaks <- c(0.4, 0.5, 0.6)
} else if(!is.null(alpha_title) && alpha_title == "Emotion") {
ybreaks <- c(0.3, 0.5, 0.7)
alpha_title <- NULL
} else {
ybreaks <- c(0.45, 0.5, 0.55)
}
by <- diff(ybreaks)[1]
title <- "Beauty"
if (outcome == "Beauty2") title <- "Beauty (Follow-up)"
p <- p +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
labs(title = title, y = "This artwork is...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("Ugly", format_percent(ybreaks, digits=0), "Beautiful")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "Valence") {
if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
ybreaks <- c(0.4, 0.5, 0.6)
} else if(!is.null(alpha_title) && alpha_title == "Emotion") {
ybreaks <- c(0.3, 0.5, 0.7)
alpha_title <- NULL
} else {
ybreaks <- c(0.45, 0.5, 0.55)
}
by <- diff(ybreaks)[1]
p <- p +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
labs(title = "Valence", y = "This artwork made me feel...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("Negative", format_percent(ybreaks, digits=0), "Positive")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "Meaning") {
if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
ybreaks <- c(0.35, 0.45, 0.55)
} else if(!is.null(alpha_title) && alpha_title == "Emotion") {
ybreaks <- c(0.3, 0.4, 0.5)
alpha_title <- NULL
} else {
ybreaks <- c(0.3, 0.4, 0.5)
}
by <- diff(ybreaks)[1]
p <- p +
labs(title = "Meaning", y = "This artwork expresses something meaningful and deep...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("Not at all", format_percent(ybreaks, digits=0), "Very much")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "Worth") {
ylim <- c(0, 3/5)
p <- p +
labs(title = "Worth", y = "To own this artwork, I'd be willing to pay...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(0, 1/5, 2/5, 3/5, 4/5, 1),
labels = c("$ 0", "$ 10", "$ 100", "$ 1,000", "$ 10,000", "$ 100,000")
) +
coord_cartesian(ylim = ylim) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "Reality") {
if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
ybreaks <- c(0.4, 0.5, 0.6)
} else if(!is.null(alpha_title) && alpha_title == "Emotion") {
ybreaks <- c(0.4, 0.5, 0.6)
alpha_title <- NULL
} else {
ybreaks <- c(0.425, 0.5, 0.575)
}
by <- diff(ybreaks)[1]
p <- p +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
labs(title = "Syntheticness", y = "This artwork is...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("AI-Generated", format_percent(ybreaks, digits=0), "Human Creation")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "Authenticity") {
if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
ybreaks <- c(0.5, 0.6, 0.7)
} else if(!is.null(alpha_title) && alpha_title == "Emotion") {
ybreaks <- c(0.5, 0.6, 0.7)
alpha_title <- NULL
} else {
ybreaks <- c(0.55, 0.6, 0.65)
}
by <- diff(ybreaks)[1]
p <- p +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
labs(title = "Authenticity", y = "This artwork is...", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("Copy / Forgery", format_percent(ybreaks, digits=0), "Original Creation")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else if (outcome == "SelfRelevance") {
ybreaks <- c(0.2, 0.3, 0.4)
by <- diff(ybreaks)[1]
p <- p +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
labs(title = "Self-Relevance", y = "This painting is personally relevant..", x = x_title, alpha = alpha_title) +
scale_y_continuous(
breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by),
labels = c("Not at all", format_percent(ybreaks, digits=0), "Very much")
) +
coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
}
p
}
make_table <- function(rez, outcome = "Beauty", subtitle = NULL) {
rez <- datawizard::data_select(rez, exclude = "SE")
t <- format_table(rez, zap_small = TRUE)
if("Difference" %in% names(rez)) {
effect_col <- "Difference"
} else {
effect_col <- "Slope"
}
t$effectsize <- rez[[effect_col]]
t$sig <- rez$p
gt::gt(t) |>
gt::data_color(columns = "effectsize", target_columns = effect_col, method = "numeric",
palette = c("red", "red", "white", "green", "green"), domain = c(-0.6, 0.6)) |>
gt::data_color(columns = "sig", target_columns = "p", fn = \(x) {
ifelse(x < 0.001, "#FFC107", ifelse(x < 0.01, "#FFEB3B", ifelse(x < 0.05, "#FFF59D", "white")))
}) |>
gt::cols_hide(c("effectsize", "sig")) |>
gt::tab_header(title = outcome, subtitle = subtitle)
}
make_analysis <- function(dftask, outcome = "Beauty") {
# Descriptive
bins <- sort(c(unique(dftask[[outcome]]) - 0.05, unique(dftask[[outcome]]) + 0.05))
if(length(bins) > 100) bins <- seq(-0.01, 1.01, by = 0.02)
p_desc <- ggplot(dftask, aes(x = Condition, y = .data[[outcome]])) +
ggdist::stat_histinterval(aes(fill = Condition), point_interval = "mean_qi", side="right", breaks = bins, align = "center") +
scale_fill_manual(values = cols) +
scale_y_continuous(labels = scales::percent_format()) +
theme_minimal() +
labs(title = paste0("Distribution of ", outcome), y = outcome)
# Model
formula <- as.formula(paste0(outcome, " ~ Style * Condition * ManipulationDistrust + (1|Participant) + (1|Item)"))
model <- lme4::lmer(formula, data = dftask)
# Performance
# TODO.
# Marginal effect of Condition
t_cond <- estimate_contrasts(model, contrast = "Condition", by = NULL, backend = "marginaleffects") |>
arrange(Difference) |>
make_table(outcome=outcome, subtitle = "Marginal Contrasts")
p_condition <- estimate_means(model, by = c("Condition"), backend = "marginaleffects") |>
ggplot(aes(x = Condition, y = Mean))
p_condition <- make_plot(p_condition, outcome = outcome) +
geom_line(aes(group=1)) +
geom_pointrange(aes(ymin = CI_low, ymax = CI_high, color = Condition),
linewidth = 1.5, size = 1.5,
key_glyph=draw_key_point) +
scale_color_manual(values = cols) +
guides(color=guide_legend(override.aes = list(size = 5)))
# By Style
t_style <- estimate_contrasts(model, contrast = "Condition", by = "Style", backend = "marginaleffects") |>
arrange(Style, Difference) |>
make_table(outcome=outcome, subtitle = "Marginal Contrasts by Style")
p_style <- estimate_means(model, by = c("Condition", "Style"), backend = "marginaleffects") |>
ggplot(aes(x = Condition, y = Mean))
p_style <- make_plot(p_style, outcome = outcome) +
geom_line(aes(group = Style, color=Style), position = position_dodge(width = 0.15),
show.legend = FALSE) +
geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = Style, color = Style),
position = position_dodge(width = 0.15), linewidth = 1, size = 1,
key_glyph=draw_key_point) +
scale_color_manual(values = cols) +
guides(color=guide_legend(override.aes = list(size = 5)))
# Manipulation Mistrust
t_trust <- estimate_contrasts(model, contrast = "Condition", by = "ManipulationDistrust = c(-5, 0, 5)", backend = "marginaleffects") |>
arrange(ManipulationDistrust, Difference) |>
make_table(outcome=outcome, subtitle = "Manipulation Distrust")
p_trust <- estimate_means(model, by = c("Condition", "ManipulationDistrust = c(-5, 0, 5)"), backend = "marginaleffects") |>
mutate(ManipulationDistrust = as.factor(ManipulationDistrust)) |>
ggplot(aes(x = Condition, y = Mean))
p_trust <- make_plot(p_trust, outcome = outcome) +
geom_line(aes(group = ManipulationDistrust, color=ManipulationDistrust),
position = position_dodge(width = 0.1), linewidth = 1) +
labs(color = "Doubts about the cover story") +
scale_color_manual(breaks = c(-5, 0, 5), labels = c("All images are 'AI'", "No doubts about the manipulation", "All images are 'Real'"), values = c("#2196F3", "black", "#E91E63")) +
ggnewscale::new_scale_color() +
geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = ManipulationDistrust, color = Condition),
position = position_dodge(width = 0.1), linewidth = 1, size = 1,
key_glyph=draw_key_point) +
scale_color_manual(values = cols)
# By Emotion
formula <- as.formula(paste0(outcome, " ~ Condition * Emotion + (1|Participant) + (1|Item)"))
model <- lme4::lmer(formula, data = dftask)
t_emotion <- estimate_contrasts(model, contrast = "Condition", by = "Emotion", backend = "marginaleffects") |>
arrange(Emotion, Difference) |>
make_table(outcome=outcome, subtitle = "Marginal Contrasts by Emotion")
p_emotion <- estimate_means(model, by = c("Condition", "Emotion"), backend = "marginaleffects") |>
mutate(Emotion = fct_rev(Emotion)) |>
ggplot(aes(x = Condition, y = Mean))
p_emotion <- make_plot(p_emotion, outcome = outcome, alpha_title = "Emotion") +
geom_line(aes(group = Emotion, color=Emotion),
position = position_dodge(width = 0.1), linewidth = 1) +
labs(color = "Emotion") +
scale_color_manual(values = c("#C5E1A5", "#4CAF50", "#CE93D8", "#9C27B0")) +
ggnewscale::new_scale_color() +
geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = Emotion, color = Condition),
position = position_dodge(width = 0.1), linewidth = 1, size = 1,
key_glyph=draw_key_point) +
scale_color_manual(values = cols)
# Complexity
formula <- as.formula(paste0(outcome, " ~ Condition * poly(Norms_Complexity, 2) + poly(Norms_Familiarity, 2) + (1|Participant) + (1|Item)"))
model <- lme4::lmer(formula, data = dftask)
p_complexity <- estimate_relation(model, by = c("Condition", "Norms_Complexity"), length=20, backend = "marginaleffects") |>
ggplot(aes(x = Norms_Complexity, y = Predicted))
p_complexity <- make_plot(p_complexity, outcome = outcome, x_title = "Image Complexity (Norms)") +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend = FALSE) +
geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
scale_color_manual(values = cols) +
scale_fill_manual(values = cols) +
scale_x_continuous(labels = scales::percent_format())
p_complexity2 <- estimate_relation(model, by = c("Condition", "Norms_Familiarity"), length=20, backend = "marginaleffects") |>
ggplot(aes(x = Norms_Familiarity, y = Predicted))
p_complexity2 <- make_plot(p_complexity2, outcome = outcome, x_title = "Image Familiarity (Norms)") +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend = FALSE) +
geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
scale_color_manual(values = cols) +
scale_fill_manual(values = cols) +
scale_x_continuous(labels = scales::percent_format()) +
theme(axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(),
plot.title = element_blank(), plot.subtitle = element_blank())
p_complexity <- (p_complexity | p_complexity2) + plot_layout(guides = "collect")
# Self-Relevance
if(outcome != "SelfRelevance") {
formula <- as.formula(paste0(outcome, " ~ Condition * poly(SelfRelevance, 2) + (1|Participant) + (1|Item)"))
model <- lme4::lmer(formula, data = filter(dftask, !is.na(SelfRelevance)))
vals <- paste0("SelfRelevance = c(", paste0(as.character(sort(c(0, round(mean(dftask$SelfRelevance, na.rm=TRUE), 2), 0.5, 1))), collapse = ", "), ")")
t_selfrelevance <- estimate_contrasts(model, contrast = "Condition", by = vals, backend = "marginaleffects") |>
arrange(SelfRelevance, Difference) |>
make_table(outcome=outcome, subtitle = "Self-Relevance (Marginal Contrasts)")
t_selfrelevance2 <- estimate_slopes(model, trend = "SelfRelevance", by = c("Condition", "SelfRelevance = c(0, 0.25, 0.5, 0.75, 1)"), backend = "marginaleffects") |>
arrange(Condition, SelfRelevance) |>
make_table(outcome=outcome, subtitle = "Self-Relevance (Marginal Slopes)")
p_selfrelevance <- estimate_relation(model, by = c("Condition", "SelfRelevance"), length=20, backend = "marginaleffects") |>
ggplot(aes(x = SelfRelevance, y = Predicted))
p_selfrelevance <- make_plot(p_selfrelevance, outcome = outcome, x_title = "Self-Relevance") +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend = FALSE) +
geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
scale_color_manual(values = cols) +
scale_fill_manual(values = cols) +
scale_x_continuous(labels = scales::percent_format())
} else{
t_selfrelevance <- "N/A"
t_selfrelevance2 <- "N/A"
p_selfrelevance <- "N/A"
}
# Beauty (Follow-up)
if(outcome != "Beauty2") {
formula <- as.formula(paste0("Beauty2 ~ Condition * poly(", outcome, ", 2) + (1|Participant) + (1|Item)"))
model <- lme4::lmer(formula, data = filter(dftask, !is.na(Beauty2)))
vals <- paste0(outcome, " = c(", paste0(as.character(c(0, 0.25, 0.5, 0.75, 1)), collapse = ", "), ")")
t_beauty <- estimate_contrasts(model, contrast = "Condition", by = vals, backend = "marginaleffects") |>
make_table(outcome=outcome, subtitle = "Predicting Follow-up Beauty (Contrasts)")
t_beauty2 <- estimate_slopes(model, trend = outcome, by = c("Condition", paste0(outcome, "= c(0, 0.25, 0.5, 0.75, 1)")), backend = "marginaleffects") |>
arrange(Condition) |>
make_table(outcome=outcome, subtitle = "Predicting Follow-up Beauty (Slopes)")
p_beauty <- estimate_relation(model, by = c("Condition", outcome), length=60, backend = "marginaleffects") |>
ggplot(aes(x = .data[[outcome]], y = Predicted)) +
geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray")
if(outcome %in% c("Beauty", "Valence")) p_beauty <- p_beauty + geom_vline(xintercept = 0.5, linetype = "dashed", color = "gray")
p_beauty <- p_beauty +
geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend = FALSE) +
geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
scale_color_manual(values = cols) +
scale_fill_manual(values = cols) +
scale_x_continuous(labels = scales::percent_format()) +
scale_y_continuous(
breaks = c(0.2, 0.35, 0.5, 0.65, 0.8),
labels = c("Ugly", "35%", "50%", "65%", "Beautiful")
) +
labs(y = "Beauty (Follow-up)", title = "Beauty (Follow-up)",
subtitle = "After being reminded that all artworks were Human originals") +
coord_cartesian(ylim = c(0.2, 0.8)) +
theme_minimal() +
theme(plot.subtitle = element_text(face = "italic"), plot.title = element_text(face = "bold"))
} else {
t_beauty <- "N/A"
t_beauty2 <- "N/A"
p_beauty <- "N/A"
}
list(p_desc=p_desc,
t_condition=t_cond, p_condition=p_condition,
t_style=t_style, p_style=p_style,
t_emotion=t_emotion, p_emotion=p_emotion,
p_complexity = p_complexity,
t_trust=t_trust, p_trust=p_trust,
t_selfrelevance=t_selfrelevance, t_selfrelevance2=t_selfrelevance2, p_selfrelevance=p_selfrelevance,
t_beauty=t_beauty, t_beauty2=t_beauty2, p_beauty=p_beauty
)
}Code
rez_beauty <- make_analysis(dftask, outcome="Beauty")
rez_beauty$p_desc
Condition
Code
rez_beauty$p_condition
Code
rez_beauty$t_condition| Beauty | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.06 | [-0.07, -0.05] | -16.62 | < .001 |
| Human Forgery | Human Original | -0.03 | [-0.04, -0.03] | -8.99 | < .001 |
| AI-Generated | Human Forgery | -0.03 | [-0.03, -0.02] | -7.63 | < .001 |
Style
Code
rez_beauty$p_style
Code
rez_beauty$t_style| Beauty | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.05 | [-0.07, -0.04] | -7.08 | < .001 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.03 | [-0.05, -0.02] | -4.33 | < .001 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | -0.02 | [-0.03, -0.01] | -2.79 | 0.005 |
| AI-Generated | Human Original | Classical | -0.06 | [-0.08, -0.05] | -8.90 | < .001 |
| AI-Generated | Human Forgery | Classical | -0.03 | [-0.05, -0.02] | -4.72 | < .001 |
| Human Forgery | Human Original | Classical | -0.03 | [-0.04, -0.02] | -4.17 | < .001 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.07 | [-0.08, -0.05] | -9.29 | < .001 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.04 | [-0.05, -0.03] | -5.57 | < .001 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.03 | [-0.04, -0.01] | -3.70 | < .001 |
| AI-Generated | Human Original | Romantic and Realism | -0.06 | [-0.07, -0.04] | -7.98 | < .001 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.03 | [-0.04, -0.02] | -4.07 | < .001 |
| Human Forgery | Human Original | Romantic and Realism | -0.03 | [-0.04, -0.01] | -3.92 | < .001 |
Emotion
Code
rez_beauty$p_emotion
Code
rez_beauty$t_emotion| Beauty | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14625) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Negative - High intensity | -0.05 | [-0.07, -0.04] | -7.29 | < .001 |
| AI-Generated | Human Forgery | Negative - High intensity | -0.04 | [-0.05, -0.02] | -5.11 | < .001 |
| Human Forgery | Human Original | Negative - High intensity | -0.02 | [-0.03, 0.00] | -2.20 | 0.028 |
| AI-Generated | Human Original | Negative - Low intensity | -0.07 | [-0.08, -0.06] | -9.66 | < .001 |
| Human Forgery | Human Original | Negative - Low intensity | -0.04 | [-0.05, -0.02] | -5.12 | < .001 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.03 | [-0.05, -0.02] | -4.43 | < .001 |
| AI-Generated | Human Original | Positive - High intensity | -0.07 | [-0.08, -0.05] | -9.00 | < .001 |
| Human Forgery | Human Original | Positive - High intensity | -0.04 | [-0.05, -0.02] | -5.32 | < .001 |
| AI-Generated | Human Forgery | Positive - High intensity | -0.03 | [-0.04, -0.01] | -3.74 | < .001 |
| AI-Generated | Human Original | Positive - Low intensity | -0.05 | [-0.07, -0.04] | -7.05 | < .001 |
| Human Forgery | Human Original | Positive - Low intensity | -0.04 | [-0.05, -0.02] | -5.22 | < .001 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.01 | [-0.03, 0.00] | -1.83 | 0.067 |
Complexity and Familiarity
Code
rez_beauty$p_complexity
Manipulation Belief
Code
rez_beauty$p_trust
Code
rez_beauty$t_trust| Beauty | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.09 | [-0.12, -0.07] | -8.17 | < .001 |
| Human Forgery | Human Original | -5 | -0.05 | [-0.08, -0.03] | -4.56 | < .001 |
| AI-Generated | Human Forgery | -5 | -0.04 | [-0.06, -0.02] | -3.62 | < .001 |
| AI-Generated | Human Original | 0 | -0.06 | [-0.07, -0.05] | -16.90 | < .001 |
| Human Forgery | Human Original | 0 | -0.03 | [-0.04, -0.03] | -9.17 | < .001 |
| AI-Generated | Human Forgery | 0 | -0.03 | [-0.04, -0.02] | -7.74 | < .001 |
| AI-Generated | Human Original | 5 | -0.03 | [-0.05, -0.01] | -2.83 | 0.005 |
| AI-Generated | Human Forgery | 5 | -0.02 | [-0.04, 0.01] | -1.44 | 0.150 |
| Human Forgery | Human Original | 5 | -0.01 | [-0.04, 0.01] | -1.40 | 0.162 |
Self-Relevance
Code
rez_beauty$p_selfrelevance
Code
rez_beauty$t_selfrelevance| Beauty | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.05 | [-0.06, -0.04] | -8.11 | < .001 |
| Human Forgery | Human Original | 0.00 | -0.03 | [-0.04, -0.01] | -4.03 | < .001 |
| AI-Generated | Human Forgery | 0.00 | -0.03 | [-0.04, -0.01] | -4.06 | < .001 |
| AI-Generated | Human Original | 0.28 | -0.06 | [-0.07, -0.05] | -9.27 | < .001 |
| Human Forgery | Human Original | 0.28 | -0.03 | [-0.05, -0.02] | -5.42 | < .001 |
| AI-Generated | Human Forgery | 0.28 | -0.02 | [-0.04, -0.01] | -3.89 | < .001 |
| AI-Generated | Human Original | 0.50 | -0.06 | [-0.07, -0.04] | -8.22 | < .001 |
| Human Forgery | Human Original | 0.50 | -0.03 | [-0.05, -0.02] | -5.18 | < .001 |
| AI-Generated | Human Forgery | 0.50 | -0.02 | [-0.03, -0.01] | -3.10 | 0.002 |
| AI-Generated | Human Original | 1.00 | -0.03 | [-0.07, 0.00] | -1.74 | 0.083 |
| Human Forgery | Human Original | 1.00 | -0.02 | [-0.06, 0.01] | -1.25 | 0.213 |
| AI-Generated | Human Forgery | 1.00 | -0.01 | [-0.05, 0.03] | -0.44 | 0.657 |
Code
rez_beauty$t_selfrelevance2| Beauty | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.32 | [ 0.26, 0.39] | 9.58 | < .001 |
| Human Original | 0.25 | 0.26 | [ 0.23, 0.29] | 16.37 | < .001 |
| Human Original | 0.50 | 0.20 | [ 0.18, 0.23] | 14.07 | < .001 |
| Human Original | 0.75 | 0.14 | [ 0.08, 0.21] | 4.57 | < .001 |
| Human Original | 1.00 | 0.08 | [-0.02, 0.18] | 1.65 | 0.098 |
| Human Forgery | 0.00 | 0.29 | [ 0.22, 0.35] | 8.52 | < .001 |
| Human Forgery | 0.25 | 0.25 | [ 0.21, 0.28] | 15.52 | < .001 |
| Human Forgery | 0.50 | 0.21 | [ 0.17, 0.24] | 13.31 | < .001 |
| Human Forgery | 0.75 | 0.16 | [ 0.10, 0.23] | 4.98 | < .001 |
| Human Forgery | 1.00 | 0.12 | [ 0.02, 0.23] | 2.34 | 0.020 |
| AI-Generated | 0.00 | 0.29 | [ 0.23, 0.36] | 8.70 | < .001 |
| AI-Generated | 0.25 | 0.26 | [ 0.23, 0.29] | 16.16 | < .001 |
| AI-Generated | 0.50 | 0.22 | [ 0.19, 0.25] | 15.00 | < .001 |
| AI-Generated | 0.75 | 0.19 | [ 0.13, 0.25] | 5.90 | < .001 |
| AI-Generated | 1.00 | 0.15 | [ 0.05, 0.26] | 2.99 | 0.003 |
Beauty 2
Code
rez_beauty$p_beauty
Code
rez_beauty$t_beauty| Beauty | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Beauty | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.01 | [-0.02, 0.04] | 0.61 | 0.545 |
| AI-Generated | Human Original | 0.00 | 0.02 | [-0.01, 0.05] | 1.29 | 0.196 |
| AI-Generated | Human Forgery | 0.00 | 0.01 | [-0.02, 0.04] | 0.70 | 0.484 |
| Human Forgery | Human Original | 0.25 | 0.02 | [ 0.00, 0.03] | 2.61 | 0.009 |
| AI-Generated | Human Original | 0.25 | 0.02 | [ 0.01, 0.03] | 2.81 | 0.005 |
| AI-Generated | Human Forgery | 0.25 | 0.00 | [-0.01, 0.01] | 0.17 | 0.864 |
| Human Forgery | Human Original | 0.50 | 0.01 | [ 0.00, 0.03] | 2.73 | 0.006 |
| AI-Generated | Human Original | 0.50 | 0.01 | [ 0.00, 0.02] | 2.56 | 0.011 |
| AI-Generated | Human Forgery | 0.50 | 0.00 | [-0.01, 0.01] | -0.18 | 0.854 |
| Human Forgery | Human Original | 0.75 | 0.00 | [-0.01, 0.02] | 0.75 | 0.455 |
| AI-Generated | Human Original | 0.75 | 0.01 | [ 0.00, 0.02] | 1.25 | 0.211 |
| AI-Generated | Human Forgery | 0.75 | 0.00 | [-0.01, 0.02] | 0.51 | 0.613 |
| Human Forgery | Human Original | 1.00 | -0.01 | [-0.05, 0.02] | -0.78 | 0.437 |
| AI-Generated | Human Original | 1.00 | 0.00 | [-0.04, 0.04] | 0.03 | 0.975 |
| AI-Generated | Human Forgery | 1.00 | 0.01 | [-0.03, 0.05] | 0.72 | 0.473 |
Code
rez_beauty$t_beauty2| Beauty | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Beauty | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.39 | [0.30, 0.48] | 8.45 | < .001 |
| Human Original | 0.25 | 0.44 | [0.39, 0.49] | 17.36 | < .001 |
| Human Original | 0.50 | 0.48 | [0.46, 0.51] | 35.07 | < .001 |
| Human Original | 0.75 | 0.53 | [0.47, 0.58] | 18.56 | < .001 |
| Human Original | 1.00 | 0.57 | [0.48, 0.67] | 11.49 | < .001 |
| Human Forgery | 0.00 | 0.44 | [0.35, 0.53] | 9.39 | < .001 |
| Human Forgery | 0.25 | 0.45 | [0.40, 0.50] | 18.57 | < .001 |
| Human Forgery | 0.50 | 0.46 | [0.43, 0.49] | 30.92 | < .001 |
| Human Forgery | 0.75 | 0.47 | [0.41, 0.54] | 14.23 | < .001 |
| Human Forgery | 1.00 | 0.48 | [0.37, 0.59] | 8.52 | < .001 |
| AI-Generated | 0.00 | 0.39 | [0.30, 0.48] | 8.41 | < .001 |
| AI-Generated | 0.25 | 0.43 | [0.38, 0.47] | 18.19 | < .001 |
| AI-Generated | 0.50 | 0.47 | [0.44, 0.50] | 30.08 | < .001 |
| AI-Generated | 0.75 | 0.50 | [0.43, 0.57] | 14.37 | < .001 |
| AI-Generated | 1.00 | 0.54 | [0.42, 0.66] | 9.17 | < .001 |
Valence
Code
rez_valence <- make_analysis(dftask, outcome="Valence")
rez_valence$p_desc
Condition
Code
rez_valence$p_condition
Code
rez_valence$t_condition| Valence | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.06 | [-0.07, -0.05] | -16.16 | < .001 |
| Human Forgery | Human Original | -0.03 | [-0.04, -0.03] | -8.60 | < .001 |
| AI-Generated | Human Forgery | -0.03 | [-0.04, -0.02] | -7.56 | < .001 |
Style
Code
rez_valence$p_style
Code
rez_valence$t_style| Valence | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.05 | [-0.07, -0.04] | -6.90 | < .001 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.03 | [-0.04, -0.01] | -3.50 | < .001 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | -0.03 | [-0.04, -0.01] | -3.43 | < .001 |
| AI-Generated | Human Original | Classical | -0.07 | [-0.08, -0.05] | -8.92 | < .001 |
| AI-Generated | Human Forgery | Classical | -0.03 | [-0.05, -0.02] | -4.48 | < .001 |
| Human Forgery | Human Original | Classical | -0.03 | [-0.05, -0.02] | -4.43 | < .001 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.07 | [-0.08, -0.05] | -8.99 | < .001 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.04 | [-0.05, -0.02] | -4.77 | < .001 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.03 | [-0.05, -0.02] | -4.20 | < .001 |
| AI-Generated | Human Original | Romantic and Realism | -0.06 | [-0.07, -0.04] | -7.51 | < .001 |
| Human Forgery | Human Original | Romantic and Realism | -0.03 | [-0.05, -0.02] | -4.50 | < .001 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.02 | [-0.04, -0.01] | -3.02 | 0.003 |
Emotion
Code
rez_valence$p_emotion
Code
rez_valence$t_emotion| Valence | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14625) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Negative - High intensity | -0.05 | [-0.06, -0.03] | -6.19 | < .001 |
| AI-Generated | Human Forgery | Negative - High intensity | -0.04 | [-0.05, -0.02] | -4.87 | < .001 |
| Human Forgery | Human Original | Negative - High intensity | -0.01 | [-0.03, 0.00] | -1.33 | 0.182 |
| AI-Generated | Human Original | Negative - Low intensity | -0.07 | [-0.08, -0.05] | -8.67 | < .001 |
| Human Forgery | Human Original | Negative - Low intensity | -0.04 | [-0.05, -0.02] | -5.00 | < .001 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.03 | [-0.04, -0.01] | -3.58 | < .001 |
| AI-Generated | Human Original | Positive - High intensity | -0.08 | [-0.09, -0.06] | -10.14 | < .001 |
| Human Forgery | Human Original | Positive - High intensity | -0.05 | [-0.06, -0.03] | -6.09 | < .001 |
| AI-Generated | Human Forgery | Positive - High intensity | -0.03 | [-0.05, -0.02] | -4.11 | < .001 |
| AI-Generated | Human Original | Positive - Low intensity | -0.06 | [-0.07, -0.04] | -7.13 | < .001 |
| Human Forgery | Human Original | Positive - Low intensity | -0.04 | [-0.05, -0.02] | -4.68 | < .001 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.02 | [-0.03, 0.00] | -2.46 | 0.014 |
Complexity and Familiarity
Code
rez_valence$p_complexity
Manipulation Belief
Code
rez_valence$p_trust
Code
rez_valence$t_trust| Valence | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.07 | [-0.09, -0.04] | -5.62 | < .001 |
| Human Forgery | Human Original | -5 | -0.04 | [-0.06, -0.02] | -3.35 | < .001 |
| AI-Generated | Human Forgery | -5 | -0.03 | [-0.05, 0.00] | -2.28 | 0.023 |
| AI-Generated | Human Original | 0 | -0.06 | [-0.07, -0.05] | -16.06 | < .001 |
| Human Forgery | Human Original | 0 | -0.03 | [-0.04, -0.03] | -8.61 | < .001 |
| AI-Generated | Human Forgery | 0 | -0.03 | [-0.04, -0.02] | -7.46 | < .001 |
| AI-Generated | Human Original | 5 | -0.06 | [-0.08, -0.03] | -5.05 | < .001 |
| AI-Generated | Human Forgery | 5 | -0.03 | [-0.05, -0.01] | -2.72 | 0.007 |
| Human Forgery | Human Original | 5 | -0.03 | [-0.05, 0.00] | -2.34 | 0.020 |
Self-Relevance
Code
rez_valence$p_selfrelevance
Code
rez_valence$t_selfrelevance| Valence | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.04 | [-0.06, -0.03] | -6.43 | < .001 |
| AI-Generated | Human Forgery | 0.00 | -0.02 | [-0.04, -0.01] | -3.43 | < .001 |
| Human Forgery | Human Original | 0.00 | -0.02 | [-0.03, -0.01] | -2.99 | 0.003 |
| AI-Generated | Human Original | 0.28 | -0.06 | [-0.08, -0.05] | -9.46 | < .001 |
| Human Forgery | Human Original | 0.28 | -0.04 | [-0.05, -0.03] | -6.17 | < .001 |
| AI-Generated | Human Forgery | 0.28 | -0.02 | [-0.03, -0.01] | -3.33 | < .001 |
| AI-Generated | Human Original | 0.50 | -0.07 | [-0.08, -0.05] | -9.45 | < .001 |
| Human Forgery | Human Original | 0.50 | -0.04 | [-0.06, -0.03] | -6.21 | < .001 |
| AI-Generated | Human Forgery | 0.50 | -0.02 | [-0.04, -0.01] | -3.31 | < .001 |
| AI-Generated | Human Original | 1.00 | -0.05 | [-0.09, -0.01] | -2.63 | 0.009 |
| AI-Generated | Human Forgery | 1.00 | -0.04 | [-0.08, 0.00] | -1.78 | 0.074 |
| Human Forgery | Human Original | 1.00 | -0.02 | [-0.06, 0.03] | -0.76 | 0.448 |
Code
rez_valence$t_selfrelevance2| Valence | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.34 | [ 0.27, 0.41] | 9.42 | < .001 |
| Human Original | 0.25 | 0.27 | [ 0.23, 0.30] | 15.52 | < .001 |
| Human Original | 0.50 | 0.19 | [ 0.16, 0.22] | 12.52 | < .001 |
| Human Original | 0.75 | 0.12 | [ 0.05, 0.19] | 3.58 | < .001 |
| Human Original | 1.00 | 0.05 | [-0.06, 0.15] | 0.87 | 0.383 |
| Human Forgery | 0.00 | 0.24 | [ 0.17, 0.31] | 6.65 | < .001 |
| Human Forgery | 0.25 | 0.22 | [ 0.19, 0.25] | 12.92 | < .001 |
| Human Forgery | 0.50 | 0.20 | [ 0.17, 0.23] | 12.01 | < .001 |
| Human Forgery | 0.75 | 0.18 | [ 0.11, 0.25] | 5.03 | < .001 |
| Human Forgery | 1.00 | 0.16 | [ 0.05, 0.27] | 2.77 | 0.006 |
| AI-Generated | 0.00 | 0.25 | [ 0.18, 0.32] | 7.09 | < .001 |
| AI-Generated | 0.25 | 0.22 | [ 0.18, 0.25] | 12.88 | < .001 |
| AI-Generated | 0.50 | 0.18 | [ 0.15, 0.21] | 11.56 | < .001 |
| AI-Generated | 0.75 | 0.15 | [ 0.08, 0.22] | 4.36 | < .001 |
| AI-Generated | 1.00 | 0.11 | [ 0.01, 0.22] | 2.07 | 0.038 |
Beauty 2
Code
rez_valence$p_beauty
Code
rez_valence$t_beauty| Valence | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Valence | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.01 | [-0.01, 0.04] | 1.04 | 0.298 |
| AI-Generated | Human Original | 0.00 | 0.03 | [ 0.00, 0.05] | 1.94 | 0.052 |
| AI-Generated | Human Forgery | 0.00 | 0.01 | [-0.01, 0.04] | 0.90 | 0.366 |
| Human Forgery | Human Original | 0.25 | 0.01 | [ 0.00, 0.03] | 2.42 | 0.016 |
| AI-Generated | Human Original | 0.25 | 0.02 | [ 0.01, 0.03] | 2.82 | 0.005 |
| AI-Generated | Human Forgery | 0.25 | 0.00 | [-0.01, 0.01] | 0.38 | 0.701 |
| Human Forgery | Human Original | 0.50 | 0.01 | [ 0.00, 0.02] | 1.90 | 0.058 |
| AI-Generated | Human Original | 0.50 | 0.01 | [ 0.00, 0.02] | 1.37 | 0.170 |
| AI-Generated | Human Forgery | 0.50 | 0.00 | [-0.01, 0.01] | -0.53 | 0.598 |
| Human Forgery | Human Original | 0.75 | 0.00 | [-0.01, 0.01] | 0.23 | 0.816 |
| AI-Generated | Human Original | 0.75 | 0.00 | [-0.02, 0.01] | -0.32 | 0.751 |
| AI-Generated | Human Forgery | 0.75 | 0.00 | [-0.02, 0.01] | -0.51 | 0.611 |
| Human Forgery | Human Original | 1.00 | -0.01 | [-0.05, 0.02] | -0.73 | 0.463 |
| AI-Generated | Human Original | 1.00 | -0.01 | [-0.05, 0.02] | -0.68 | 0.495 |
| AI-Generated | Human Forgery | 1.00 | 0.00 | [-0.04, 0.04] | 0.01 | 0.989 |
Code
rez_valence$t_beauty2| Valence | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Valence | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.35 | [0.26, 0.44] | 7.90 | < .001 |
| Human Original | 0.25 | 0.37 | [0.32, 0.42] | 14.96 | < .001 |
| Human Original | 0.50 | 0.38 | [0.36, 0.41] | 28.54 | < .001 |
| Human Original | 0.75 | 0.40 | [0.35, 0.45] | 14.84 | < .001 |
| Human Original | 1.00 | 0.41 | [0.32, 0.51] | 8.81 | < .001 |
| Human Forgery | 0.00 | 0.36 | [0.28, 0.45] | 8.11 | < .001 |
| Human Forgery | 0.25 | 0.36 | [0.31, 0.41] | 15.12 | < .001 |
| Human Forgery | 0.50 | 0.36 | [0.33, 0.38] | 24.53 | < .001 |
| Human Forgery | 0.75 | 0.35 | [0.29, 0.41] | 11.52 | < .001 |
| Human Forgery | 1.00 | 0.35 | [0.25, 0.45] | 6.66 | < .001 |
| AI-Generated | 0.00 | 0.32 | [0.23, 0.40] | 7.13 | < .001 |
| AI-Generated | 0.25 | 0.33 | [0.29, 0.37] | 14.46 | < .001 |
| AI-Generated | 0.50 | 0.34 | [0.32, 0.37] | 23.26 | < .001 |
| AI-Generated | 0.75 | 0.36 | [0.29, 0.42] | 10.91 | < .001 |
| AI-Generated | 1.00 | 0.37 | [0.26, 0.48] | 6.64 | < .001 |
Meaning
Code
rez_meaning <- make_analysis(dftask, outcome="Meaning")
rez_meaning$p_desc
Condition
Code
rez_meaning$p_condition
Code
rez_meaning$t_condition| Meaning | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.10 | [-0.11, -0.09] | -23.28 | < .001 |
| AI-Generated | Human Forgery | -0.06 | [-0.07, -0.05] | -14.02 | < .001 |
| Human Forgery | Human Original | -0.04 | [-0.05, -0.03] | -9.26 | < .001 |
Style
Code
rez_meaning$p_style
Code
rez_meaning$t_style| Meaning | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.08 | [-0.10, -0.06] | -9.20 | < .001 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | -0.04 | [-0.06, -0.03] | -4.91 | < .001 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.04 | [-0.05, -0.02] | -4.33 | < .001 |
| AI-Generated | Human Original | Classical | -0.11 | [-0.13, -0.09] | -12.84 | < .001 |
| AI-Generated | Human Forgery | Classical | -0.07 | [-0.08, -0.05] | -7.53 | < .001 |
| Human Forgery | Human Original | Classical | -0.05 | [-0.06, -0.03] | -5.29 | < .001 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.11 | [-0.12, -0.09] | -12.19 | < .001 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.06 | [-0.07, -0.04] | -6.44 | < .001 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.05 | [-0.07, -0.03] | -5.72 | < .001 |
| AI-Generated | Human Original | Romantic and Realism | -0.11 | [-0.12, -0.09] | -12.34 | < .001 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.08 | [-0.10, -0.06] | -9.17 | < .001 |
| Human Forgery | Human Original | Romantic and Realism | -0.03 | [-0.04, -0.01] | -3.18 | 0.001 |
Emotion
Code
rez_meaning$p_emotion
Code
rez_meaning$t_emotion| Meaning | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14625) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Negative - High intensity | -0.13 | [-0.14, -0.11] | -14.27 | < .001 |
| AI-Generated | Human Forgery | Negative - High intensity | -0.08 | [-0.10, -0.06] | -9.09 | < .001 |
| Human Forgery | Human Original | Negative - High intensity | -0.05 | [-0.06, -0.03] | -5.21 | < .001 |
| AI-Generated | Human Original | Negative - Low intensity | -0.08 | [-0.10, -0.07] | -9.68 | < .001 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.05 | [-0.07, -0.04] | -6.11 | < .001 |
| Human Forgery | Human Original | Negative - Low intensity | -0.03 | [-0.05, -0.01] | -3.48 | < .001 |
| AI-Generated | Human Original | Positive - High intensity | -0.11 | [-0.12, -0.09] | -11.99 | < .001 |
| AI-Generated | Human Forgery | Positive - High intensity | -0.06 | [-0.07, -0.04] | -6.38 | < .001 |
| Human Forgery | Human Original | Positive - High intensity | -0.05 | [-0.07, -0.03] | -5.65 | < .001 |
| AI-Generated | Human Original | Positive - Low intensity | -0.09 | [-0.11, -0.07] | -10.22 | < .001 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.05 | [-0.07, -0.04] | -6.27 | < .001 |
| Human Forgery | Human Original | Positive - Low intensity | -0.04 | [-0.05, -0.02] | -3.99 | < .001 |
Complexity and Familiarity
Code
rez_meaning$p_complexity
Manipulation Belief
Code
rez_meaning$p_trust
Code
rez_meaning$t_trust| Meaning | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.11 | [-0.14, -0.08] | -8.06 | < .001 |
| Human Forgery | Human Original | -5 | -0.06 | [-0.09, -0.04] | -4.50 | < .001 |
| AI-Generated | Human Forgery | -5 | -0.05 | [-0.08, -0.02] | -3.58 | < .001 |
| AI-Generated | Human Original | 0 | -0.10 | [-0.11, -0.09] | -23.13 | < .001 |
| AI-Generated | Human Forgery | 0 | -0.06 | [-0.07, -0.05] | -13.73 | < .001 |
| Human Forgery | Human Original | 0 | -0.04 | [-0.05, -0.03] | -9.41 | < .001 |
| AI-Generated | Human Original | 5 | -0.09 | [-0.12, -0.07] | -7.30 | < .001 |
| AI-Generated | Human Forgery | 5 | -0.07 | [-0.10, -0.05] | -5.68 | < .001 |
| Human Forgery | Human Original | 5 | -0.02 | [-0.05, 0.00] | -1.63 | 0.103 |
Self-Relevance
Code
rez_meaning$p_selfrelevance
Code
rez_meaning$t_selfrelevance| Meaning | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.09 | [-0.10, -0.07] | -10.98 | < .001 |
| AI-Generated | Human Forgery | 0.00 | -0.05 | [-0.06, -0.03] | -6.24 | < .001 |
| Human Forgery | Human Original | 0.00 | -0.04 | [-0.05, -0.02] | -4.72 | < .001 |
| AI-Generated | Human Original | 0.28 | -0.10 | [-0.11, -0.08] | -12.72 | < .001 |
| AI-Generated | Human Forgery | 0.28 | -0.05 | [-0.07, -0.04] | -7.12 | < .001 |
| Human Forgery | Human Original | 0.28 | -0.04 | [-0.06, -0.03] | -5.66 | < .001 |
| AI-Generated | Human Original | 0.50 | -0.09 | [-0.11, -0.08] | -11.51 | < .001 |
| AI-Generated | Human Forgery | 0.50 | -0.05 | [-0.07, -0.03] | -6.15 | < .001 |
| Human Forgery | Human Original | 0.50 | -0.04 | [-0.06, -0.03] | -5.45 | < .001 |
| AI-Generated | Human Original | 1.00 | -0.06 | [-0.11, -0.02] | -2.77 | 0.006 |
| Human Forgery | Human Original | 1.00 | -0.04 | [-0.09, 0.00] | -1.83 | 0.067 |
| AI-Generated | Human Forgery | 1.00 | -0.02 | [-0.07, 0.03] | -0.87 | 0.386 |
Code
rez_meaning$t_selfrelevance2| Meaning | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.20 | [ 0.12, 0.29] | 4.99 | < .001 |
| Human Original | 0.25 | 0.18 | [ 0.14, 0.21] | 8.93 | < .001 |
| Human Original | 0.50 | 0.15 | [ 0.11, 0.18] | 8.25 | < .001 |
| Human Original | 0.75 | 0.12 | [ 0.04, 0.19] | 3.02 | 0.003 |
| Human Original | 1.00 | 0.09 | [-0.04, 0.21] | 1.38 | 0.168 |
| Human Forgery | 0.00 | 0.18 | [ 0.10, 0.26] | 4.45 | < .001 |
| Human Forgery | 0.25 | 0.16 | [ 0.12, 0.20] | 8.28 | < .001 |
| Human Forgery | 0.50 | 0.14 | [ 0.10, 0.18] | 7.40 | < .001 |
| Human Forgery | 0.75 | 0.12 | [ 0.04, 0.20] | 2.90 | 0.004 |
| Human Forgery | 1.00 | 0.09 | [-0.03, 0.22] | 1.47 | 0.141 |
| AI-Generated | 0.00 | 0.15 | [ 0.07, 0.23] | 3.67 | < .001 |
| AI-Generated | 0.25 | 0.16 | [ 0.12, 0.20] | 8.15 | < .001 |
| AI-Generated | 0.50 | 0.17 | [ 0.13, 0.20] | 9.20 | < .001 |
| AI-Generated | 0.75 | 0.17 | [ 0.10, 0.25] | 4.50 | < .001 |
| AI-Generated | 1.00 | 0.18 | [ 0.06, 0.31] | 2.92 | 0.003 |
Beauty 2
Code
rez_meaning$p_beauty
Code
rez_meaning$t_beauty| Meaning | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Meaning | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.01 | [-0.01, 0.03] | 0.82 | 0.411 |
| AI-Generated | Human Original | 0.00 | 0.01 | [-0.01, 0.02] | 0.63 | 0.529 |
| AI-Generated | Human Forgery | 0.00 | 0.00 | [-0.02, 0.02] | -0.24 | 0.809 |
| Human Forgery | Human Original | 0.25 | 0.01 | [ 0.00, 0.02] | 1.42 | 0.156 |
| AI-Generated | Human Original | 0.25 | 0.01 | [ 0.00, 0.02] | 1.57 | 0.117 |
| AI-Generated | Human Forgery | 0.25 | 0.00 | [-0.01, 0.01] | 0.16 | 0.872 |
| Human Forgery | Human Original | 0.50 | 0.00 | [-0.01, 0.02] | 0.71 | 0.475 |
| AI-Generated | Human Original | 0.50 | 0.01 | [-0.01, 0.02] | 0.93 | 0.351 |
| AI-Generated | Human Forgery | 0.50 | 0.00 | [-0.01, 0.01] | 0.23 | 0.815 |
| Human Forgery | Human Original | 0.75 | 0.00 | [-0.02, 0.01] | -0.51 | 0.608 |
| AI-Generated | Human Original | 0.75 | 0.00 | [-0.02, 0.01] | -0.56 | 0.577 |
| AI-Generated | Human Forgery | 0.75 | 0.00 | [-0.02, 0.01] | -0.07 | 0.942 |
| Human Forgery | Human Original | 1.00 | -0.02 | [-0.05, 0.02] | -0.92 | 0.357 |
| AI-Generated | Human Original | 1.00 | -0.02 | [-0.06, 0.01] | -1.15 | 0.249 |
| AI-Generated | Human Forgery | 1.00 | -0.01 | [-0.04, 0.03] | -0.27 | 0.785 |
Code
rez_meaning$t_beauty2| Meaning | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Meaning | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.28 | [ 0.20, 0.35] | 7.34 | < .001 |
| Human Original | 0.25 | 0.23 | [ 0.19, 0.27] | 11.49 | < .001 |
| Human Original | 0.50 | 0.18 | [ 0.15, 0.21] | 13.87 | < .001 |
| Human Original | 0.75 | 0.13 | [ 0.08, 0.18] | 4.79 | < .001 |
| Human Original | 1.00 | 0.08 | [-0.01, 0.17] | 1.77 | 0.076 |
| Human Forgery | 0.00 | 0.29 | [ 0.21, 0.36] | 7.69 | < .001 |
| Human Forgery | 0.25 | 0.22 | [ 0.18, 0.26] | 11.65 | < .001 |
| Human Forgery | 0.50 | 0.16 | [ 0.13, 0.18] | 11.07 | < .001 |
| Human Forgery | 0.75 | 0.09 | [ 0.03, 0.15] | 3.02 | 0.003 |
| Human Forgery | 1.00 | 0.03 | [-0.07, 0.12] | 0.51 | 0.608 |
| AI-Generated | 0.00 | 0.31 | [ 0.23, 0.38] | 8.25 | < .001 |
| AI-Generated | 0.25 | 0.23 | [ 0.19, 0.27] | 12.57 | < .001 |
| AI-Generated | 0.50 | 0.15 | [ 0.12, 0.18] | 10.12 | < .001 |
| AI-Generated | 0.75 | 0.08 | [ 0.01, 0.14] | 2.39 | 0.017 |
| AI-Generated | 1.00 | 0.00 | [-0.10, 0.11] | 0.04 | 0.971 |
Worth
Code
rez_worth <- make_analysis(dftask, outcome="Worth")
rez_worth$p_desc
Condition
Code
rez_worth$p_condition
Code
rez_worth$t_condition| Worth | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.12 | [-0.12, -0.11] | -33.56 | < .001 |
| Human Forgery | Human Original | -0.06 | [-0.07, -0.06] | -18.68 | < .001 |
| AI-Generated | Human Forgery | -0.05 | [-0.06, -0.04] | -14.89 | < .001 |
Style
Code
rez_worth$p_style
Code
rez_worth$t_style| Worth | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.09 | [-0.11, -0.08] | -13.36 | < .001 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.05 | [-0.06, -0.03] | -6.79 | < .001 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | -0.05 | [-0.06, -0.03] | -6.63 | < .001 |
| AI-Generated | Human Original | Classical | -0.13 | [-0.14, -0.12] | -18.99 | < .001 |
| Human Forgery | Human Original | Classical | -0.08 | [-0.09, -0.06] | -10.92 | < .001 |
| AI-Generated | Human Forgery | Classical | -0.06 | [-0.07, -0.04] | -8.04 | < .001 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.12 | [-0.14, -0.11] | -17.78 | < .001 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.07 | [-0.09, -0.06] | -10.53 | < .001 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.05 | [-0.06, -0.04] | -7.22 | < .001 |
| AI-Generated | Human Original | Romantic and Realism | -0.12 | [-0.13, -0.10] | -16.99 | < .001 |
| Human Forgery | Human Original | Romantic and Realism | -0.06 | [-0.08, -0.05] | -9.12 | < .001 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.05 | [-0.07, -0.04] | -7.89 | < .001 |
Emotion
Code
rez_worth$p_emotionIgnoring unknown labels:
• alpha : "Emotion"

Code
rez_worth$t_emotion| Worth | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14625) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Negative - High intensity | -0.11 | [-0.12, -0.09] | -15.39 | < .001 |
| AI-Generated | Human Forgery | Negative - High intensity | -0.06 | [-0.07, -0.04] | -7.94 | < .001 |
| Human Forgery | Human Original | Negative - High intensity | -0.05 | [-0.07, -0.04] | -7.50 | < .001 |
| AI-Generated | Human Original | Negative - Low intensity | -0.12 | [-0.13, -0.11] | -17.37 | < .001 |
| Human Forgery | Human Original | Negative - Low intensity | -0.06 | [-0.08, -0.05] | -9.11 | < .001 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.06 | [-0.07, -0.04] | -8.07 | < .001 |
| AI-Generated | Human Original | Positive - High intensity | -0.12 | [-0.13, -0.10] | -16.60 | < .001 |
| Human Forgery | Human Original | Positive - High intensity | -0.07 | [-0.09, -0.06] | -10.63 | < .001 |
| AI-Generated | Human Forgery | Positive - High intensity | -0.04 | [-0.06, -0.03] | -6.09 | < .001 |
| AI-Generated | Human Original | Positive - Low intensity | -0.12 | [-0.13, -0.11] | -17.13 | < .001 |
| Human Forgery | Human Original | Positive - Low intensity | -0.07 | [-0.08, -0.05] | -9.79 | < .001 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.05 | [-0.06, -0.04] | -7.39 | < .001 |
Complexity and Familiarity
Code
rez_worth$p_complexity
Manipulation Belief
Code
rez_worth$p_trust
Code
rez_worth$t_trust| Worth | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14613) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.13 | [-0.15, -0.11] | -11.78 | < .001 |
| Human Forgery | Human Original | -5 | -0.07 | [-0.09, -0.05] | -6.46 | < .001 |
| AI-Generated | Human Forgery | -5 | -0.06 | [-0.08, -0.04] | -5.35 | < .001 |
| AI-Generated | Human Original | 0 | -0.12 | [-0.12, -0.11] | -33.37 | < .001 |
| Human Forgery | Human Original | 0 | -0.06 | [-0.07, -0.06] | -18.56 | < .001 |
| AI-Generated | Human Forgery | 0 | -0.05 | [-0.06, -0.04] | -14.82 | < .001 |
| AI-Generated | Human Original | 5 | -0.10 | [-0.12, -0.08] | -10.37 | < .001 |
| Human Forgery | Human Original | 5 | -0.06 | [-0.08, -0.04] | -5.89 | < .001 |
| AI-Generated | Human Forgery | 5 | -0.04 | [-0.06, -0.03] | -4.50 | < .001 |
Self-Relevance
Code
rez_worth$p_selfrelevance
Code
rez_worth$t_selfrelevance| Worth | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.09 | [-0.10, -0.07] | -14.27 | < .001 |
| Human Forgery | Human Original | 0.00 | -0.05 | [-0.06, -0.04] | -8.24 | < .001 |
| AI-Generated | Human Forgery | 0.00 | -0.04 | [-0.05, -0.02] | -5.98 | < .001 |
| AI-Generated | Human Original | 0.28 | -0.10 | [-0.11, -0.09] | -17.70 | < .001 |
| Human Forgery | Human Original | 0.28 | -0.07 | [-0.08, -0.05] | -11.43 | < .001 |
| AI-Generated | Human Forgery | 0.28 | -0.04 | [-0.05, -0.03] | -6.34 | < .001 |
| AI-Generated | Human Original | 0.50 | -0.11 | [-0.13, -0.10] | -18.03 | < .001 |
| Human Forgery | Human Original | 0.50 | -0.07 | [-0.08, -0.06] | -11.48 | < .001 |
| AI-Generated | Human Forgery | 0.50 | -0.04 | [-0.05, -0.03] | -6.68 | < .001 |
| AI-Generated | Human Original | 1.00 | -0.14 | [-0.17, -0.10] | -7.64 | < .001 |
| AI-Generated | Human Forgery | 1.00 | -0.07 | [-0.11, -0.03] | -3.75 | < .001 |
| Human Forgery | Human Original | 1.00 | -0.07 | [-0.10, -0.03] | -3.66 | < .001 |
Code
rez_worth$t_selfrelevance2| Worth | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.23 | [0.16, 0.29] | 7.08 | < .001 |
| Human Original | 0.25 | 0.21 | [0.18, 0.24] | 13.71 | < .001 |
| Human Original | 0.50 | 0.19 | [0.16, 0.22] | 14.02 | < .001 |
| Human Original | 0.75 | 0.17 | [0.12, 0.23] | 5.87 | < .001 |
| Human Original | 1.00 | 0.16 | [0.06, 0.25] | 3.27 | 0.001 |
| Human Forgery | 0.00 | 0.15 | [0.09, 0.22] | 4.84 | < .001 |
| Human Forgery | 0.25 | 0.16 | [0.13, 0.19] | 10.93 | < .001 |
| Human Forgery | 0.50 | 0.17 | [0.15, 0.20] | 11.96 | < .001 |
| Human Forgery | 0.75 | 0.18 | [0.12, 0.24] | 5.91 | < .001 |
| Human Forgery | 1.00 | 0.19 | [0.10, 0.29] | 3.88 | < .001 |
| AI-Generated | 0.00 | 0.16 | [0.10, 0.23] | 5.22 | < .001 |
| AI-Generated | 0.25 | 0.15 | [0.12, 0.18] | 10.12 | < .001 |
| AI-Generated | 0.50 | 0.14 | [0.11, 0.17] | 9.97 | < .001 |
| AI-Generated | 0.75 | 0.13 | [0.07, 0.19] | 4.21 | < .001 |
| AI-Generated | 1.00 | 0.11 | [0.02, 0.21] | 2.35 | 0.019 |
Beauty 2
Code
rez_worth$p_beauty
Code
rez_worth$t_beauty| Worth | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Worth | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.02 | [ 0.00, 0.03] | 2.29 | 0.022 |
| AI-Generated | Human Original | 0.00 | 0.01 | [ 0.00, 0.03] | 2.20 | 0.028 |
| AI-Generated | Human Forgery | 0.00 | 0.00 | [-0.01, 0.01] | -0.15 | 0.880 |
| Human Forgery | Human Original | 0.25 | 0.02 | [ 0.00, 0.03] | 2.78 | 0.006 |
| AI-Generated | Human Original | 0.25 | 0.03 | [ 0.02, 0.04] | 5.08 | < .001 |
| AI-Generated | Human Forgery | 0.25 | 0.01 | [ 0.00, 0.03] | 2.32 | 0.020 |
| Human Forgery | Human Original | 0.50 | 0.01 | [ 0.00, 0.03] | 2.18 | 0.029 |
| AI-Generated | Human Original | 0.50 | 0.02 | [ 0.01, 0.04] | 2.83 | 0.005 |
| AI-Generated | Human Forgery | 0.50 | 0.01 | [-0.01, 0.02] | 0.82 | 0.412 |
| Human Forgery | Human Original | 0.75 | 0.01 | [-0.02, 0.04] | 0.69 | 0.493 |
| AI-Generated | Human Original | 0.75 | -0.02 | [-0.05, 0.02] | -0.97 | 0.331 |
| AI-Generated | Human Forgery | 0.75 | -0.03 | [-0.06, 0.01] | -1.37 | 0.170 |
| Human Forgery | Human Original | 1.00 | 0.00 | [-0.07, 0.07] | 0.05 | 0.961 |
| AI-Generated | Human Original | 1.00 | -0.08 | [-0.16, -0.01] | -2.09 | 0.036 |
| AI-Generated | Human Forgery | 1.00 | -0.08 | [-0.17, 0.00] | -1.88 | 0.060 |
Code
rez_worth$t_beauty2| Worth | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Worth | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.47 | [ 0.40, 0.54] | 13.25 | < .001 |
| Human Original | 0.25 | 0.37 | [ 0.34, 0.40] | 22.48 | < .001 |
| Human Original | 0.50 | 0.27 | [ 0.23, 0.30] | 13.53 | < .001 |
| Human Original | 0.75 | 0.16 | [ 0.08, 0.24] | 4.03 | < .001 |
| Human Original | 1.00 | 0.06 | [-0.06, 0.18] | 0.94 | 0.349 |
| Human Forgery | 0.00 | 0.48 | [ 0.41, 0.56] | 12.23 | < .001 |
| Human Forgery | 0.25 | 0.37 | [ 0.33, 0.40] | 22.06 | < .001 |
| Human Forgery | 0.50 | 0.25 | [ 0.19, 0.31] | 8.43 | < .001 |
| Human Forgery | 0.75 | 0.14 | [ 0.02, 0.25] | 2.33 | 0.020 |
| Human Forgery | 1.00 | 0.02 | [-0.15, 0.19] | 0.22 | 0.823 |
| AI-Generated | 0.00 | 0.60 | [ 0.51, 0.68] | 14.48 | < .001 |
| AI-Generated | 0.25 | 0.38 | [ 0.35, 0.42] | 21.78 | < .001 |
| AI-Generated | 0.50 | 0.17 | [ 0.10, 0.24] | 4.84 | < .001 |
| AI-Generated | 0.75 | -0.04 | [-0.18, 0.09] | -0.67 | 0.505 |
| AI-Generated | 1.00 | -0.26 | [-0.45, -0.06] | -2.58 | 0.010 |
Syntheticness
Code
rez_reality <- make_analysis(filter(dftask, !is.na(Reality)), outcome="Reality")
rez_reality$p_desc
Condition
Code
rez_reality$p_condition
Code
rez_reality$t_condition| Reality | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.05 | [-0.06, -0.04] | -8.40 | < .001 |
| AI-Generated | Human Forgery | -0.04 | [-0.05, -0.03] | -6.14 | < .001 |
| Human Forgery | Human Original | -0.01 | [-0.03, 0.00] | -2.26 | 0.024 |
Style
Code
rez_reality$p_style
Code
rez_reality$t_style| Reality | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.05 | [-0.08, -0.03] | -4.27 | < .001 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | -0.03 | [-0.05, 0.00] | -2.34 | 0.019 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.02 | [-0.05, 0.00] | -1.94 | 0.052 |
| AI-Generated | Human Original | Classical | -0.06 | [-0.08, -0.03] | -4.73 | < .001 |
| AI-Generated | Human Forgery | Classical | -0.04 | [-0.06, -0.01] | -3.00 | 0.003 |
| Human Forgery | Human Original | Classical | -0.02 | [-0.04, 0.00] | -1.73 | 0.084 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.05 | [-0.07, -0.03] | -4.06 | < .001 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.04 | [-0.06, -0.01] | -3.01 | 0.003 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.01 | [-0.04, 0.01] | -1.04 | 0.301 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.05 | [-0.07, -0.02] | -3.93 | < .001 |
| AI-Generated | Human Original | Romantic and Realism | -0.05 | [-0.07, -0.02] | -3.74 | < .001 |
| Human Forgery | Human Original | Romantic and Realism | 0.00 | [-0.02, 0.03] | 0.19 | 0.847 |
Emotion
Code
rez_reality$p_emotion
Code
rez_reality$t_emotion| Reality | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14337) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Negative - High intensity | -0.06 | [-0.08, -0.03] | -4.74 | < .001 |
| AI-Generated | Human Forgery | Negative - High intensity | -0.04 | [-0.06, -0.02] | -3.19 | 0.001 |
| Human Forgery | Human Original | Negative - High intensity | -0.02 | [-0.04, 0.00] | -1.56 | 0.118 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.04 | [-0.07, -0.02] | -3.65 | < .001 |
| AI-Generated | Human Original | Negative - Low intensity | -0.04 | [-0.07, -0.02] | -3.63 | < .001 |
| Human Forgery | Human Original | Negative - Low intensity | 0.00 | [-0.02, 0.02] | 0.04 | 0.970 |
| AI-Generated | Human Original | Positive - High intensity | -0.06 | [-0.09, -0.04] | -5.15 | < .001 |
| AI-Generated | Human Forgery | Positive - High intensity | -0.03 | [-0.06, -0.01] | -2.61 | 0.009 |
| Human Forgery | Human Original | Positive - High intensity | -0.03 | [-0.05, -0.01] | -2.57 | 0.010 |
| AI-Generated | Human Original | Positive - Low intensity | -0.04 | [-0.06, -0.01] | -3.12 | 0.002 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.03 | [-0.06, -0.01] | -2.79 | 0.005 |
| Human Forgery | Human Original | Positive - Low intensity | 0.00 | [-0.03, 0.02] | -0.36 | 0.722 |
Complexity and Familiarity
Code
rez_reality$p_complexity
Manipulation Belief
Code
rez_reality$p_trust
Code
rez_reality$t_trust| Reality | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.07 | [-0.10, -0.03] | -3.34 | < .001 |
| AI-Generated | Human Forgery | -5 | -0.05 | [-0.09, -0.01] | -2.70 | 0.007 |
| Human Forgery | Human Original | -5 | -0.01 | [-0.05, 0.03] | -0.65 | 0.517 |
| AI-Generated | Human Original | 0 | -0.05 | [-0.06, -0.04] | -8.42 | < .001 |
| AI-Generated | Human Forgery | 0 | -0.04 | [-0.05, -0.03] | -6.20 | < .001 |
| Human Forgery | Human Original | 0 | -0.01 | [-0.03, 0.00] | -2.22 | 0.026 |
| AI-Generated | Human Original | 5 | -0.04 | [-0.07, 0.00] | -2.14 | 0.033 |
| AI-Generated | Human Forgery | 5 | -0.02 | [-0.06, 0.01] | -1.32 | 0.188 |
| Human Forgery | Human Original | 5 | -0.01 | [-0.05, 0.02] | -0.82 | 0.410 |
Self-Relevance
Code
rez_reality$p_selfrelevance
Code
rez_reality$t_selfrelevance| Reality | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10404) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.06 | [-0.08, -0.03] | -5.01 | < .001 |
| AI-Generated | Human Forgery | 0.00 | -0.05 | [-0.07, -0.03] | -4.54 | < .001 |
| Human Forgery | Human Original | 0.00 | -0.01 | [-0.03, 0.02] | -0.48 | 0.632 |
| AI-Generated | Human Original | 0.28 | -0.04 | [-0.06, -0.02] | -3.56 | < .001 |
| AI-Generated | Human Forgery | 0.28 | -0.03 | [-0.05, -0.01] | -2.60 | 0.009 |
| Human Forgery | Human Original | 0.28 | -0.01 | [-0.03, 0.01] | -0.97 | 0.331 |
| AI-Generated | Human Original | 0.50 | -0.03 | [-0.06, -0.01] | -3.00 | 0.003 |
| AI-Generated | Human Forgery | 0.50 | -0.02 | [-0.04, 0.00] | -1.70 | 0.089 |
| Human Forgery | Human Original | 0.50 | -0.02 | [-0.04, 0.01] | -1.32 | 0.186 |
| AI-Generated | Human Original | 1.00 | -0.07 | [-0.13, 0.00] | -1.97 | 0.049 |
| AI-Generated | Human Forgery | 1.00 | -0.03 | [-0.10, 0.03] | -1.01 | 0.315 |
| Human Forgery | Human Original | 1.00 | -0.03 | [-0.10, 0.04] | -0.90 | 0.367 |
Code
rez_reality$t_selfrelevance2| Reality | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10404) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.15 | [ 0.03, 0.26] | 2.55 | 0.011 |
| Human Original | 0.25 | 0.14 | [ 0.09, 0.19] | 5.11 | < .001 |
| Human Original | 0.50 | 0.13 | [ 0.08, 0.18] | 5.36 | < .001 |
| Human Original | 0.75 | 0.13 | [ 0.02, 0.23] | 2.36 | 0.018 |
| Human Original | 1.00 | 0.12 | [-0.05, 0.29] | 1.36 | 0.173 |
| Human Forgery | 0.00 | 0.13 | [ 0.02, 0.24] | 2.31 | 0.021 |
| Human Forgery | 0.25 | 0.12 | [ 0.07, 0.17] | 4.49 | < .001 |
| Human Forgery | 0.50 | 0.11 | [ 0.06, 0.16] | 4.11 | < .001 |
| Human Forgery | 0.75 | 0.09 | [-0.02, 0.21] | 1.67 | 0.094 |
| Human Forgery | 1.00 | 0.08 | [-0.10, 0.26] | 0.91 | 0.362 |
| AI-Generated | 0.00 | 0.24 | [ 0.13, 0.35] | 4.21 | < .001 |
| AI-Generated | 0.25 | 0.18 | [ 0.13, 0.23] | 6.75 | < .001 |
| AI-Generated | 0.50 | 0.12 | [ 0.07, 0.17] | 4.88 | < .001 |
| AI-Generated | 0.75 | 0.06 | [-0.04, 0.17] | 1.19 | 0.235 |
| AI-Generated | 1.00 | 0.01 | [-0.17, 0.18] | 0.08 | 0.939 |
Beauty 2
Code
rez_reality$p_beauty
Code
rez_reality$t_beauty| Reality | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Reality | Difference | 95% CI | t(10404) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.00 | [-0.02, 0.03] | 0.29 | 0.770 |
| AI-Generated | Human Original | 0.00 | 0.00 | [-0.03, 0.02] | -0.33 | 0.742 |
| AI-Generated | Human Forgery | 0.00 | -0.01 | [-0.03, 0.02] | -0.64 | 0.525 |
| Human Forgery | Human Original | 0.25 | 0.01 | [ 0.00, 0.02] | 1.57 | 0.116 |
| AI-Generated | Human Original | 0.25 | 0.00 | [-0.01, 0.01] | 0.35 | 0.723 |
| AI-Generated | Human Forgery | 0.25 | -0.01 | [-0.02, 0.00] | -1.25 | 0.212 |
| Human Forgery | Human Original | 0.50 | 0.01 | [-0.01, 0.02] | 0.94 | 0.349 |
| AI-Generated | Human Original | 0.50 | 0.00 | [-0.02, 0.01] | -0.07 | 0.947 |
| AI-Generated | Human Forgery | 0.50 | -0.01 | [-0.02, 0.01] | -1.01 | 0.311 |
| Human Forgery | Human Original | 0.75 | -0.01 | [-0.02, 0.01] | -1.06 | 0.287 |
| AI-Generated | Human Original | 0.75 | -0.01 | [-0.02, 0.00] | -2.03 | 0.042 |
| AI-Generated | Human Forgery | 0.75 | -0.01 | [-0.02, 0.01] | -0.97 | 0.332 |
| Human Forgery | Human Original | 1.00 | -0.03 | [-0.05, -0.01] | -2.72 | 0.007 |
| AI-Generated | Human Original | 1.00 | -0.03 | [-0.05, -0.01] | -2.92 | 0.003 |
| AI-Generated | Human Forgery | 1.00 | 0.00 | [-0.03, 0.02] | -0.25 | 0.799 |
Code
rez_reality$t_beauty2| Reality | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Reality | Slope | 95% CI | t(10404) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | -0.08 | [-0.17, 0.02] | -1.63 | 0.104 |
| Human Original | 0.25 | 0.02 | [-0.03, 0.07] | 0.70 | 0.482 |
| Human Original | 0.50 | 0.11 | [ 0.09, 0.13] | 10.80 | < .001 |
| Human Original | 0.75 | 0.20 | [ 0.16, 0.25] | 8.31 | < .001 |
| Human Original | 1.00 | 0.30 | [ 0.21, 0.39] | 6.46 | < .001 |
| Human Forgery | 0.00 | -0.03 | [-0.12, 0.06] | -0.60 | 0.551 |
| Human Forgery | 0.25 | 0.02 | [-0.02, 0.07] | 0.98 | 0.325 |
| Human Forgery | 0.50 | 0.08 | [ 0.06, 0.10] | 7.53 | < .001 |
| Human Forgery | 0.75 | 0.13 | [ 0.08, 0.18] | 5.20 | < .001 |
| Human Forgery | 1.00 | 0.18 | [ 0.09, 0.27] | 3.90 | < .001 |
| AI-Generated | 0.00 | -0.03 | [-0.12, 0.05] | -0.75 | 0.452 |
| AI-Generated | 0.25 | 0.02 | [-0.02, 0.07] | 1.03 | 0.303 |
| AI-Generated | 0.50 | 0.08 | [ 0.06, 0.10] | 8.06 | < .001 |
| AI-Generated | 0.75 | 0.14 | [ 0.09, 0.19] | 5.60 | < .001 |
| AI-Generated | 1.00 | 0.20 | [ 0.11, 0.29] | 4.30 | < .001 |
Authenticity
Code
rez_authenticity <- make_analysis(filter(dftask, !is.na(Authenticity)), outcome="Authenticity")
rez_authenticity$p_desc
Condition
Code
rez_authenticity$p_condition
Code
rez_authenticity$t_condition| Authenticity | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|
| Human Forgery | Human Original | -0.02 | [-0.03, -0.01] | -3.41 | < .001 |
| AI-Generated | Human Original | -0.02 | [-0.03, -0.01] | -3.25 | 0.001 |
| AI-Generated | Human Forgery | 0.00 | [-0.01, 0.01] | 0.16 | 0.874 |
Style
Code
rez_authenticity$p_style
Code
rez_authenticity$t_style| Authenticity | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | Abstract and Avant-garde | -0.01 | [-0.03, 0.01] | -0.89 | 0.372 |
| AI-Generated | Human Original | Abstract and Avant-garde | 0.00 | [-0.02, 0.03] | 0.30 | 0.766 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | 0.01 | [-0.01, 0.04] | 1.19 | 0.234 |
| AI-Generated | Human Original | Classical | -0.04 | [-0.06, -0.01] | -3.00 | 0.003 |
| Human Forgery | Human Original | Classical | -0.02 | [-0.04, 0.01] | -1.52 | 0.128 |
| AI-Generated | Human Forgery | Classical | -0.02 | [-0.04, 0.01] | -1.48 | 0.140 |
| Human Forgery | Human Original | Impressionist and Expressionist | -0.03 | [-0.05, -0.01] | -2.46 | 0.014 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.01 | [-0.03, 0.02] | -0.65 | 0.516 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | 0.02 | [ 0.00, 0.04] | 1.81 | 0.071 |
| AI-Generated | Human Original | Romantic and Realism | -0.04 | [-0.06, -0.01] | -3.15 | 0.002 |
| Human Forgery | Human Original | Romantic and Realism | -0.02 | [-0.05, 0.00] | -1.95 | 0.052 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.01 | [-0.04, 0.01] | -1.21 | 0.228 |
Emotion
Code
rez_authenticity$p_emotion
Code
rez_authenticity$t_emotion| Authenticity | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(14337) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | Negative - High intensity | -0.02 | [-0.05, 0.00] | -1.94 | 0.052 |
| AI-Generated | Human Original | Negative - High intensity | -0.01 | [-0.03, 0.02] | -0.49 | 0.623 |
| AI-Generated | Human Forgery | Negative - High intensity | 0.02 | [-0.01, 0.04] | 1.44 | 0.150 |
| AI-Generated | Human Original | Negative - Low intensity | -0.02 | [-0.04, 0.00] | -1.66 | 0.097 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.02 | [-0.04, 0.01] | -1.31 | 0.190 |
| Human Forgery | Human Original | Negative - Low intensity | 0.00 | [-0.03, 0.02] | -0.33 | 0.739 |
| Human Forgery | Human Original | Positive - High intensity | -0.04 | [-0.06, -0.01] | -3.15 | 0.002 |
| AI-Generated | Human Original | Positive - High intensity | -0.03 | [-0.05, 0.00] | -2.17 | 0.030 |
| AI-Generated | Human Forgery | Positive - High intensity | 0.01 | [-0.01, 0.03] | 0.92 | 0.356 |
| AI-Generated | Human Original | Positive - Low intensity | -0.02 | [-0.05, 0.00] | -2.07 | 0.038 |
| Human Forgery | Human Original | Positive - Low intensity | -0.02 | [-0.04, 0.01] | -1.34 | 0.179 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.01 | [-0.03, 0.01] | -0.73 | 0.464 |
Complexity and Familiarity
Code
rez_authenticity$p_complexity
Manipulation Belief
Code
rez_authenticity$p_trust
Code
rez_authenticity$t_trust| Authenticity | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(14325) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.05 | [-0.08, -0.01] | -2.53 | 0.012 |
| Human Forgery | Human Original | -5 | -0.03 | [-0.07, 0.01] | -1.55 | 0.120 |
| AI-Generated | Human Forgery | -5 | -0.02 | [-0.06, 0.02] | -0.98 | 0.328 |
| AI-Generated | Human Original | 0 | -0.02 | [-0.03, -0.01] | -3.45 | < .001 |
| Human Forgery | Human Original | 0 | -0.02 | [-0.03, -0.01] | -3.45 | < .001 |
| AI-Generated | Human Forgery | 0 | 0.00 | [-0.01, 0.01] | 0.00 | 0.996 |
| Human Forgery | Human Original | 5 | -0.01 | [-0.05, 0.02] | -0.68 | 0.499 |
| AI-Generated | Human Original | 5 | 0.01 | [-0.03, 0.04] | 0.39 | 0.694 |
| AI-Generated | Human Forgery | 5 | 0.02 | [-0.02, 0.05] | 1.07 | 0.284 |
Self-Relevance
Code
rez_authenticity$p_selfrelevance
Code
rez_authenticity$t_selfrelevance| Authenticity | ||||||
| Self-Relevance (Marginal Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10404) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | -0.03 | [-0.06, -0.01] | -3.19 | 0.001 |
| Human Forgery | Human Original | 0.00 | -0.03 | [-0.05, -0.01] | -2.69 | 0.007 |
| AI-Generated | Human Forgery | 0.00 | -0.01 | [-0.03, 0.02] | -0.48 | 0.630 |
| Human Forgery | Human Original | 0.28 | -0.02 | [-0.04, 0.00] | -1.64 | 0.102 |
| AI-Generated | Human Original | 0.28 | 0.00 | [-0.02, 0.02] | 0.21 | 0.834 |
| AI-Generated | Human Forgery | 0.28 | 0.02 | [ 0.00, 0.04] | 1.84 | 0.065 |
| Human Forgery | Human Original | 0.50 | -0.01 | [-0.04, 0.01] | -1.28 | 0.200 |
| AI-Generated | Human Original | 0.50 | 0.00 | [-0.02, 0.03] | 0.38 | 0.702 |
| AI-Generated | Human Forgery | 0.50 | 0.02 | [ 0.00, 0.04] | 1.67 | 0.095 |
| AI-Generated | Human Original | 1.00 | -0.08 | [-0.14, -0.01] | -2.42 | 0.016 |
| AI-Generated | Human Forgery | 1.00 | -0.04 | [-0.11, 0.02] | -1.34 | 0.180 |
| Human Forgery | Human Original | 1.00 | -0.03 | [-0.10, 0.03] | -1.00 | 0.317 |
Code
rez_authenticity$t_selfrelevance2| Authenticity | |||||
| Self-Relevance (Marginal Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10404) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | -0.06 | [-0.17, 0.05] | -1.11 | 0.267 |
| Human Original | 0.25 | 0.03 | [-0.02, 0.08] | 1.06 | 0.290 |
| Human Original | 0.50 | 0.12 | [ 0.07, 0.16] | 4.97 | < .001 |
| Human Original | 0.75 | 0.21 | [ 0.10, 0.31] | 3.98 | < .001 |
| Human Original | 1.00 | 0.30 | [ 0.13, 0.46] | 3.52 | < .001 |
| Human Forgery | 0.00 | 0.00 | [-0.11, 0.11] | 0.03 | 0.980 |
| Human Forgery | 0.25 | 0.06 | [ 0.01, 0.11] | 2.23 | 0.026 |
| Human Forgery | 0.50 | 0.11 | [ 0.06, 0.16] | 4.48 | < .001 |
| Human Forgery | 0.75 | 0.17 | [ 0.06, 0.28] | 3.10 | 0.002 |
| Human Forgery | 1.00 | 0.23 | [ 0.05, 0.40] | 2.57 | 0.010 |
| AI-Generated | 0.00 | 0.14 | [ 0.03, 0.24] | 2.48 | 0.013 |
| AI-Generated | 0.25 | 0.10 | [ 0.05, 0.16] | 4.08 | < .001 |
| AI-Generated | 0.50 | 0.07 | [ 0.03, 0.12] | 3.04 | 0.002 |
| AI-Generated | 0.75 | 0.04 | [-0.06, 0.15] | 0.81 | 0.420 |
| AI-Generated | 1.00 | 0.01 | [-0.16, 0.18] | 0.13 | 0.894 |
Beauty 2
Code
rez_authenticity$p_beauty
Code
rez_authenticity$t_beauty| Authenticity | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | Authenticity | Difference | 95% CI | t(10404) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | 0.00 | [-0.03, 0.03] | 0.17 | 0.865 |
| AI-Generated | Human Original | 0.00 | 0.01 | [-0.02, 0.04] | 0.62 | 0.538 |
| AI-Generated | Human Forgery | 0.00 | 0.01 | [-0.02, 0.03] | 0.46 | 0.646 |
| Human Forgery | Human Original | 0.25 | 0.01 | [-0.01, 0.02] | 0.95 | 0.341 |
| AI-Generated | Human Original | 0.25 | 0.00 | [-0.01, 0.02] | 0.25 | 0.805 |
| AI-Generated | Human Forgery | 0.25 | 0.00 | [-0.02, 0.01] | -0.71 | 0.475 |
| Human Forgery | Human Original | 0.50 | 0.00 | [-0.01, 0.02] | 0.61 | 0.542 |
| AI-Generated | Human Original | 0.50 | -0.01 | [-0.02, 0.01] | -1.03 | 0.303 |
| AI-Generated | Human Forgery | 0.50 | -0.01 | [-0.03, 0.00] | -1.65 | 0.100 |
| Human Forgery | Human Original | 0.75 | 0.00 | [-0.02, 0.01] | -0.78 | 0.435 |
| AI-Generated | Human Original | 0.75 | -0.02 | [-0.03, -0.01] | -3.15 | 0.002 |
| AI-Generated | Human Forgery | 0.75 | -0.01 | [-0.02, 0.00] | -2.36 | 0.018 |
| Human Forgery | Human Original | 1.00 | -0.02 | [-0.04, 0.00] | -1.87 | 0.062 |
| AI-Generated | Human Original | 1.00 | -0.03 | [-0.05, -0.01] | -2.89 | 0.004 |
| AI-Generated | Human Forgery | 1.00 | -0.01 | [-0.03, 0.01] | -0.99 | 0.321 |
Code
rez_authenticity$t_beauty2| Authenticity | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | Authenticity | Slope | 95% CI | t(10404) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | -0.15 | [-0.25, -0.05] | -3.07 | 0.002 |
| Human Original | 0.25 | -0.05 | [-0.10, 0.01] | -1.66 | 0.096 |
| Human Original | 0.50 | 0.06 | [ 0.04, 0.08] | 5.28 | < .001 |
| Human Original | 0.75 | 0.17 | [ 0.12, 0.21] | 7.17 | < .001 |
| Human Original | 1.00 | 0.27 | [ 0.18, 0.36] | 6.10 | < .001 |
| Human Forgery | 0.00 | -0.12 | [-0.22, -0.03] | -2.50 | 0.012 |
| Human Forgery | 0.25 | -0.04 | [-0.09, 0.01] | -1.57 | 0.117 |
| Human Forgery | 0.50 | 0.04 | [ 0.02, 0.06] | 3.42 | < .001 |
| Human Forgery | 0.75 | 0.12 | [ 0.07, 0.16] | 4.92 | < .001 |
| Human Forgery | 1.00 | 0.20 | [ 0.11, 0.29] | 4.33 | < .001 |
| AI-Generated | 0.00 | -0.18 | [-0.27, -0.08] | -3.67 | < .001 |
| AI-Generated | 0.25 | -0.08 | [-0.13, -0.03] | -2.92 | 0.003 |
| AI-Generated | 0.50 | 0.02 | [ 0.00, 0.04] | 1.84 | 0.066 |
| AI-Generated | 0.75 | 0.12 | [ 0.07, 0.16] | 5.05 | < .001 |
| AI-Generated | 1.00 | 0.22 | [ 0.13, 0.30] | 4.86 | < .001 |
Self-Relevance
Code
rez_selfrelevance <- make_analysis(filter(dftask, !is.na(SelfRelevance)), outcome="SelfRelevance")
rez_selfrelevance$p_desc
Condition
Code
rez_selfrelevance$p_condition
Code
rez_selfrelevance$t_condition| SelfRelevance | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | 0.00 | [-0.01, 0.00] | -0.96 | 0.339 |
| Human Forgery | Human Original | 0.00 | [-0.01, 0.01] | -0.66 | 0.509 |
| AI-Generated | Human Forgery | 0.00 | [-0.01, 0.01] | -0.30 | 0.768 |
Style
Code
rez_selfrelevance$p_style
Code
rez_selfrelevance$t_style| SelfRelevance | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | Abstract and Avant-garde | -0.01 | [-0.03, 0.01] | -0.55 | 0.581 |
| AI-Generated | Human Original | Abstract and Avant-garde | 0.00 | [-0.02, 0.02] | 0.11 | 0.914 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | 0.01 | [-0.01, 0.03] | 0.66 | 0.508 |
| Human Forgery | Human Original | Classical | -0.02 | [-0.04, 0.00] | -1.71 | 0.088 |
| AI-Generated | Human Original | Classical | -0.01 | [-0.03, 0.01] | -1.40 | 0.160 |
| AI-Generated | Human Forgery | Classical | 0.00 | [-0.02, 0.02] | 0.30 | 0.761 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.02 | [-0.04, 0.00] | -1.61 | 0.107 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.01 | [-0.03, 0.01] | -0.70 | 0.486 |
| Human Forgery | Human Original | Impressionist and Expressionist | 0.01 | [-0.01, 0.03] | 0.91 | 0.362 |
| Human Forgery | Human Original | Romantic and Realism | 0.00 | [-0.02, 0.02] | 0.02 | 0.982 |
| AI-Generated | Human Forgery | Romantic and Realism | 0.00 | [-0.02, 0.02] | 0.06 | 0.955 |
| AI-Generated | Human Original | Romantic and Realism | 0.00 | [-0.02, 0.02] | 0.08 | 0.937 |
Emotion
Code
rez_selfrelevance$p_emotionIgnoring unknown labels:
• alpha : "Emotion"

Code
rez_selfrelevance$t_emotion| SelfRelevance | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(10545) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Forgery | Negative - High intensity | 0.00 | [-0.02, 0.02] | -0.04 | 0.965 |
| AI-Generated | Human Original | Negative - High intensity | 0.01 | [-0.01, 0.03] | 0.59 | 0.558 |
| Human Forgery | Human Original | Negative - High intensity | 0.01 | [-0.01, 0.03] | 0.64 | 0.523 |
| AI-Generated | Human Original | Negative - Low intensity | -0.01 | [-0.03, 0.01] | -1.40 | 0.161 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.01 | [-0.03, 0.01] | -1.34 | 0.181 |
| Human Forgery | Human Original | Negative - Low intensity | 0.00 | [-0.02, 0.02] | -0.07 | 0.947 |
| Human Forgery | Human Original | Positive - High intensity | -0.02 | [-0.04, 0.00] | -1.90 | 0.058 |
| AI-Generated | Human Original | Positive - High intensity | -0.02 | [-0.04, 0.00] | -1.83 | 0.068 |
| AI-Generated | Human Forgery | Positive - High intensity | 0.00 | [-0.02, 0.02] | 0.06 | 0.948 |
| Human Forgery | Human Original | Positive - Low intensity | 0.00 | [-0.02, 0.02] | -0.01 | 0.995 |
| AI-Generated | Human Original | Positive - Low intensity | 0.01 | [-0.01, 0.03] | 0.78 | 0.437 |
| AI-Generated | Human Forgery | Positive - Low intensity | 0.01 | [-0.01, 0.03] | 0.79 | 0.430 |
Complexity and Familiarity
Code
rez_selfrelevance$p_complexity
Manipulation Belief
Code
rez_selfrelevance$p_trust
Code
rez_selfrelevance$t_trust| SelfRelevance | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | -5 | -0.04 | [-0.07, -0.01] | -2.52 | 0.012 |
| AI-Generated | Human Original | -5 | -0.01 | [-0.04, 0.02] | -0.38 | 0.701 |
| AI-Generated | Human Forgery | -5 | 0.03 | [ 0.00, 0.06] | 2.13 | 0.033 |
| AI-Generated | Human Original | 0 | 0.00 | [-0.01, 0.00] | -0.96 | 0.337 |
| Human Forgery | Human Original | 0 | 0.00 | [-0.01, 0.01] | -0.89 | 0.375 |
| AI-Generated | Human Forgery | 0 | 0.00 | [-0.01, 0.01] | -0.07 | 0.943 |
| AI-Generated | Human Forgery | 5 | -0.03 | [-0.06, -0.01] | -2.31 | 0.021 |
| AI-Generated | Human Original | 5 | 0.00 | [-0.03, 0.03] | -0.24 | 0.810 |
| Human Forgery | Human Original | 5 | 0.03 | [ 0.00, 0.06] | 2.07 | 0.038 |
Beauty 2
Code
rez_selfrelevance$p_beauty
Code
rez_selfrelevance$t_beauty| SelfRelevance | ||||||
| Predicting Follow-up Beauty (Contrasts) | ||||||
| Level1 | Level2 | SelfRelevance | Difference | 95% CI | t(10548) | p |
|---|---|---|---|---|---|---|
| Human Forgery | Human Original | 0.00 | -0.01 | [-0.02, 0.01] | -0.98 | 0.328 |
| AI-Generated | Human Original | 0.00 | -0.01 | [-0.02, 0.00] | -1.86 | 0.062 |
| AI-Generated | Human Forgery | 0.00 | -0.01 | [-0.02, 0.01] | -0.88 | 0.378 |
| Human Forgery | Human Original | 0.25 | 0.00 | [-0.01, 0.01] | -0.01 | 0.989 |
| AI-Generated | Human Original | 0.25 | -0.01 | [-0.02, 0.00] | -1.84 | 0.065 |
| AI-Generated | Human Forgery | 0.25 | -0.01 | [-0.02, 0.00] | -1.83 | 0.067 |
| Human Forgery | Human Original | 0.50 | 0.00 | [-0.01, 0.01] | 0.16 | 0.874 |
| AI-Generated | Human Original | 0.50 | -0.01 | [-0.02, 0.00] | -1.57 | 0.117 |
| AI-Generated | Human Forgery | 0.50 | -0.01 | [-0.02, 0.00] | -1.74 | 0.081 |
| Human Forgery | Human Original | 0.75 | 0.00 | [-0.02, 0.01] | -0.35 | 0.727 |
| AI-Generated | Human Original | 0.75 | -0.01 | [-0.03, 0.00] | -1.37 | 0.171 |
| AI-Generated | Human Forgery | 0.75 | -0.01 | [-0.02, 0.01] | -0.98 | 0.326 |
| Human Forgery | Human Original | 1.00 | -0.01 | [-0.05, 0.03] | -0.61 | 0.544 |
| AI-Generated | Human Original | 1.00 | -0.01 | [-0.05, 0.02] | -0.64 | 0.519 |
| AI-Generated | Human Forgery | 1.00 | 0.00 | [-0.04, 0.04] | -0.02 | 0.981 |
Code
rez_selfrelevance$t_beauty2| SelfRelevance | |||||
| Predicting Follow-up Beauty (Slopes) | |||||
| Condition | SelfRelevance | Slope | 95% CI | t(10548) | p |
|---|---|---|---|---|---|
| Human Original | 0.00 | 0.55 | [0.48, 0.61] | 16.86 | < .001 |
| Human Original | 0.25 | 0.48 | [0.45, 0.51] | 30.86 | < .001 |
| Human Original | 0.50 | 0.41 | [0.38, 0.43] | 29.35 | < .001 |
| Human Original | 0.75 | 0.34 | [0.28, 0.40] | 11.23 | < .001 |
| Human Original | 1.00 | 0.27 | [0.17, 0.37] | 5.51 | < .001 |
| Human Forgery | 0.00 | 0.58 | [0.52, 0.64] | 17.95 | < .001 |
| Human Forgery | 0.25 | 0.49 | [0.46, 0.52] | 32.26 | < .001 |
| Human Forgery | 0.50 | 0.40 | [0.37, 0.43] | 27.29 | < .001 |
| Human Forgery | 0.75 | 0.31 | [0.25, 0.38] | 9.89 | < .001 |
| Human Forgery | 1.00 | 0.22 | [0.13, 0.32] | 4.42 | < .001 |
| AI-Generated | 0.00 | 0.55 | [0.49, 0.61] | 17.10 | < .001 |
| AI-Generated | 0.25 | 0.48 | [0.45, 0.51] | 31.14 | < .001 |
| AI-Generated | 0.50 | 0.41 | [0.38, 0.43] | 29.35 | < .001 |
| AI-Generated | 0.75 | 0.34 | [0.28, 0.39] | 11.09 | < .001 |
| AI-Generated | 1.00 | 0.26 | [0.17, 0.36] | 5.31 | < .001 |
Beauty 2
Code
rez_beauty2 <- make_analysis(filter(dftask, !is.na(Beauty2)), outcome="Beauty2")
rez_beauty2$p_desc
Condition
Code
rez_beauty2$p_condition
Code
rez_beauty2$t_condition| Beauty2 | |||||
| Marginal Contrasts | |||||
| Level1 | Level2 | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|
| AI-Generated | Human Original | -0.01 | [-0.02, 0.00] | -2.86 | 0.004 |
| AI-Generated | Human Forgery | -0.01 | [-0.02, 0.00] | -2.03 | 0.042 |
| Human Forgery | Human Original | 0.00 | [-0.01, 0.01] | -0.83 | 0.409 |
Style
Code
rez_beauty2$p_style
Code
rez_beauty2$t_style| Beauty2 | ||||||
| Marginal Contrasts by Style | ||||||
| Level1 | Level2 | Style | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | Abstract and Avant-garde | -0.02 | [-0.03, 0.00] | -1.68 | 0.093 |
| Human Forgery | Human Original | Abstract and Avant-garde | -0.01 | [-0.03, 0.01] | -1.26 | 0.208 |
| AI-Generated | Human Forgery | Abstract and Avant-garde | 0.00 | [-0.02, 0.01] | -0.43 | 0.670 |
| Human Forgery | Human Original | Classical | -0.02 | [-0.04, 0.00] | -2.35 | 0.019 |
| AI-Generated | Human Original | Classical | -0.01 | [-0.03, 0.00] | -1.51 | 0.131 |
| AI-Generated | Human Forgery | Classical | 0.01 | [-0.01, 0.03] | 0.84 | 0.399 |
| AI-Generated | Human Forgery | Impressionist and Expressionist | -0.02 | [-0.04, -0.01] | -2.58 | 0.010 |
| AI-Generated | Human Original | Impressionist and Expressionist | -0.02 | [-0.04, 0.00] | -2.19 | 0.028 |
| Human Forgery | Human Original | Impressionist and Expressionist | 0.00 | [-0.01, 0.02] | 0.39 | 0.694 |
| AI-Generated | Human Forgery | Romantic and Realism | -0.02 | [-0.03, 0.00] | -1.90 | 0.058 |
| AI-Generated | Human Original | Romantic and Realism | 0.00 | [-0.02, 0.01] | -0.33 | 0.741 |
| Human Forgery | Human Original | Romantic and Realism | 0.01 | [ 0.00, 0.03] | 1.57 | 0.117 |
Emotion
Code
rez_beauty2$p_emotion
Code
rez_beauty2$t_emotion| Beauty2 | ||||||
| Marginal Contrasts by Emotion | ||||||
| Level1 | Level2 | Emotion | Difference | 95% CI | t(10545) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Forgery | Negative - High intensity | -0.01 | [-0.03, 0.01] | -1.33 | 0.184 |
| AI-Generated | Human Original | Negative - High intensity | -0.01 | [-0.02, 0.01] | -0.68 | 0.495 |
| Human Forgery | Human Original | Negative - High intensity | 0.01 | [-0.01, 0.02] | 0.65 | 0.517 |
| AI-Generated | Human Original | Negative - Low intensity | -0.01 | [-0.03, 0.00] | -1.45 | 0.146 |
| AI-Generated | Human Forgery | Negative - Low intensity | -0.01 | [-0.03, 0.00] | -1.45 | 0.148 |
| Human Forgery | Human Original | Negative - Low intensity | 0.00 | [-0.02, 0.02] | -0.01 | 0.994 |
| AI-Generated | Human Original | Positive - High intensity | -0.03 | [-0.05, -0.01] | -3.26 | 0.001 |
| Human Forgery | Human Original | Positive - High intensity | -0.03 | [-0.04, -0.01] | -2.86 | 0.004 |
| AI-Generated | Human Forgery | Positive - High intensity | 0.00 | [-0.02, 0.01] | -0.40 | 0.689 |
| AI-Generated | Human Forgery | Positive - Low intensity | -0.01 | [-0.03, 0.01] | -0.82 | 0.415 |
| AI-Generated | Human Original | Positive - Low intensity | 0.00 | [-0.02, 0.02] | -0.24 | 0.807 |
| Human Forgery | Human Original | Positive - Low intensity | 0.01 | [-0.01, 0.02] | 0.57 | 0.569 |
Complexity and Familiarity
Code
rez_beauty2$p_complexity
Manipulation Belief
Code
rez_beauty2$p_trust
Code
rez_beauty2$t_trust| Beauty2 | ||||||
| Manipulation Distrust | ||||||
| Level1 | Level2 | ManipulationDistrust | Difference | 95% CI | t(10533) | p |
|---|---|---|---|---|---|---|
| AI-Generated | Human Original | -5 | -0.02 | [-0.05, 0.01] | -1.48 | 0.139 |
| Human Forgery | Human Original | -5 | -0.01 | [-0.04, 0.02] | -0.83 | 0.405 |
| AI-Generated | Human Forgery | -5 | -0.01 | [-0.04, 0.02] | -0.65 | 0.519 |
| AI-Generated | Human Original | 0 | -0.01 | [-0.02, 0.00] | -2.90 | 0.004 |
| AI-Generated | Human Forgery | 0 | -0.01 | [-0.02, 0.00] | -2.02 | 0.043 |
| Human Forgery | Human Original | 0 | 0.00 | [-0.01, 0.00] | -0.88 | 0.379 |
| AI-Generated | Human Forgery | 5 | -0.01 | [-0.04, 0.02] | -0.68 | 0.497 |
| AI-Generated | Human Original | 5 | -0.01 | [-0.03, 0.02] | -0.39 | 0.696 |
| Human Forgery | Human Original | 5 | 0.00 | [-0.02, 0.03] | 0.29 | 0.772 |
Figures
Code
fig_stimselection 