FakeArt - Data Analysis

Data Preparation

library(tidyverse)
library(easystats)
library(patchwork)
library(ggside)
library(ggdist)

df <- read.csv("../data/data_participants.csv")
dftask <- read.csv("../data/data_task.csv") |> 
  mutate(Condition = fct_relevel(Condition, "Human Original", "Human Forgery", "AI-Generated")) 

cols <- c(
  # Condition
  "Human Original" = "#F51D56",
  "Human Forgery" = "#F5A41D",
  "AI-Generated" = "#1D9AF5",
  "AI Original" = "#1D9AF5",
  "AI Copy" = "#4CAF50",
  "Not recognized" = "#607D8B",
  # Style
  "Abstract and Avant-garde" = "#E41A1C", 
  "Classical" = "#377EB8", 
  "Impressionist and Expressionist" = "#4DAF4A", 
  "Romantic and Realism" = "#FF7F00"
)

Stimuli Selection

Code
fig_stimselection <- png::readPNG("../experiment/stimuli/stimuli_selection/stimuli_selection_files/figure-html/unnamed-chunk-10-1.png") |>
  grid::rasterGrob(interpolate=TRUE) |> 
  patchwork::wrap_elements()
fig_stimselection

Effect of Condition

Beauty

Code
make_plot  <- function(p, outcome = "Beauty", x_title = NULL, alpha_title=NULL) {
  p <- p + theme_minimal() 
  if (outcome %in%  c("Beauty", "Beauty2")) {
    if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
      ybreaks <- c(0.4, 0.5, 0.6)
    } else if(!is.null(alpha_title) && alpha_title == "Emotion") {
      ybreaks <- c(0.3, 0.5, 0.7)
      alpha_title <- NULL
    } else {
      ybreaks <- c(0.45, 0.5, 0.55)
    }
    by <- diff(ybreaks)[1]
    title <- "Beauty"
    if (outcome == "Beauty2") title <- "Beauty (Follow-up)"
    p <- p +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
      labs(title = title, y = "This artwork is...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("Ugly", format_percent(ybreaks, digits=0), "Beautiful")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else if (outcome ==  "Valence") {
    if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
      ybreaks <- c(0.4, 0.5, 0.6)
    } else if(!is.null(alpha_title) && alpha_title == "Emotion") {
      ybreaks <- c(0.3, 0.5, 0.7)
      alpha_title <- NULL
    } else {
      ybreaks <- c(0.45, 0.5, 0.55)
    }
    by <- diff(ybreaks)[1]
    p <- p +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
      labs(title = "Valence", y = "This artwork made me feel...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("Negative", format_percent(ybreaks, digits=0), "Positive")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else if (outcome ==  "Meaning") {
    if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
      ybreaks <- c(0.35, 0.45, 0.55)
    } else if(!is.null(alpha_title) && alpha_title == "Emotion") {
      ybreaks <- c(0.3, 0.4, 0.5)
      alpha_title <- NULL
    } else {
      ybreaks <- c(0.3, 0.4, 0.5)
    }
    by <- diff(ybreaks)[1]
    p <- p +
      labs(title = "Meaning", y = "This artwork expresses something meaningful and deep...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("Not at all", format_percent(ybreaks, digits=0), "Very much")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else if (outcome ==  "Worth") {
    ylim <- c(0, 3/5)
    p <- p +
      labs(title = "Worth", y = "To own this artwork, I'd be willing to pay...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(0, 1/5, 2/5, 3/5, 4/5, 1), 
        labels = c("$ 0", "$ 10", "$ 100", "$ 1,000", "$ 10,000", "$ 100,000")
      ) +
      coord_cartesian(ylim = ylim) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else if (outcome ==  "Reality") {
    if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
      ybreaks <- c(0.4, 0.5, 0.6)
    } else if(!is.null(alpha_title) && alpha_title == "Emotion") {
      ybreaks <- c(0.4, 0.5, 0.6)
      alpha_title <- NULL
    } else {
      ybreaks <- c(0.425, 0.5, 0.575)
    }
    by <- diff(ybreaks)[1]
    p <- p +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
      labs(title = "Syntheticness", y = "This artwork is...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("AI-Generated", format_percent(ybreaks, digits=0), "Human Creation")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else if (outcome ==  "Authenticity") {
    if(!is.null(x_title) && x_title %in% c("Self-Relevance", "Image Complexity (Norms)", "Image Familiarity (Norms)")) {
      ybreaks <- c(0.5, 0.6, 0.7)
    } else if(!is.null(alpha_title) && alpha_title == "Emotion") {
      ybreaks <- c(0.5, 0.6, 0.7)
      alpha_title <- NULL
    } else {
      ybreaks <- c(0.55, 0.6, 0.65)
    }
    by <- diff(ybreaks)[1]
    p <- p +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
      labs(title = "Authenticity", y = "This artwork is...", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("Copy / Forgery", format_percent(ybreaks, digits=0), "Original Creation")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  }  else if (outcome ==  "SelfRelevance") {
    ybreaks <- c(0.2, 0.3, 0.4)
    by <- diff(ybreaks)[1]
    p <- p +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") +
      labs(title = "Self-Relevance", y = "This painting is personally relevant..", x = x_title, alpha = alpha_title) +
      scale_y_continuous(
        breaks = c(min(ybreaks) - by, ybreaks, max(ybreaks) + by), 
        labels = c("Not at all", format_percent(ybreaks, digits=0), "Very much")
      ) +
      coord_cartesian(ylim = c(min(ybreaks) - by, max(ybreaks) + by)) +
      theme(axis.title.y = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } 

  p
}

make_table <- function(rez, outcome = "Beauty", subtitle = NULL) {
  rez <- datawizard::data_select(rez, exclude = "SE")
  t <- format_table(rez, zap_small = TRUE)

  if("Difference" %in% names(rez)) {
    effect_col <- "Difference"
  } else {
    effect_col <- "Slope"
  }
  t$effectsize <- rez[[effect_col]]
  t$sig <- rez$p
  
  gt::gt(t) |> 
    gt::data_color(columns = "effectsize", target_columns = effect_col, method = "numeric",
palette = c("red", "red", "white", "green", "green"), domain = c(-0.6, 0.6)) |> 
    gt::data_color(columns = "sig", target_columns = "p", fn = \(x) {
      ifelse(x < 0.001, "#FFC107", ifelse(x < 0.01, "#FFEB3B", ifelse(x < 0.05, "#FFF59D", "white")))
    }) |> 
    gt::cols_hide(c("effectsize", "sig")) |> 
    gt::tab_header(title = outcome, subtitle = subtitle)

}

make_analysis <- function(dftask, outcome = "Beauty") {
  
  # Descriptive
  bins <- sort(c(unique(dftask[[outcome]]) - 0.05, unique(dftask[[outcome]]) + 0.05))
  if(length(bins) > 100) bins <- seq(-0.01, 1.01, by = 0.02)
  p_desc <- ggplot(dftask, aes(x = Condition, y = .data[[outcome]])) +
    ggdist::stat_histinterval(aes(fill = Condition), point_interval = "mean_qi", side="right",  breaks = bins, align = "center") +
    scale_fill_manual(values = cols) +
    scale_y_continuous(labels = scales::percent_format()) +
    theme_minimal() +
    labs(title = paste0("Distribution of ", outcome), y = outcome)

  # Model
  formula <- as.formula(paste0(outcome, " ~ Style * Condition * ManipulationDistrust + (1|Participant) + (1|Item)"))
  model <- lme4::lmer(formula, data = dftask)

  # Performance
  # TODO.

  # Marginal effect of Condition
  t_cond <- estimate_contrasts(model, contrast = "Condition", by = NULL, backend = "marginaleffects") |> 
    arrange(Difference) |> 
    make_table(outcome=outcome, subtitle = "Marginal Contrasts")
  
  p_condition <- estimate_means(model, by = c("Condition"), backend = "marginaleffects") |> 
    ggplot(aes(x = Condition, y = Mean)) 
  p_condition <- make_plot(p_condition, outcome = outcome) +
    geom_line(aes(group=1)) +
    geom_pointrange(aes(ymin = CI_low, ymax = CI_high, color = Condition), 
                    linewidth = 1.5, size = 1.5,
                    key_glyph=draw_key_point) +
    scale_color_manual(values = cols) +
    guides(color=guide_legend(override.aes = list(size = 5)))
  

  # By Style
  t_style <- estimate_contrasts(model, contrast = "Condition", by = "Style", backend = "marginaleffects") |> 
    arrange(Style, Difference) |> 
    make_table(outcome=outcome, subtitle = "Marginal Contrasts by Style")

  p_style <- estimate_means(model, by = c("Condition", "Style"), backend = "marginaleffects") |> 
    ggplot(aes(x = Condition, y = Mean)) 
  p_style <- make_plot(p_style, outcome = outcome) +
    geom_line(aes(group = Style, color=Style), position = position_dodge(width = 0.15),
              show.legend  = FALSE) +
    geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = Style, color = Style), 
                    position = position_dodge(width = 0.15), linewidth = 1, size = 1,
                    key_glyph=draw_key_point) +
    scale_color_manual(values = cols)  +
    guides(color=guide_legend(override.aes = list(size = 5)))

  # Manipulation Mistrust
  t_trust <- estimate_contrasts(model, contrast = "Condition", by = "ManipulationDistrust = c(-5, 0, 5)", backend = "marginaleffects") |> 
    arrange(ManipulationDistrust, Difference) |> 
    make_table(outcome=outcome, subtitle = "Manipulation Distrust")

  p_trust <- estimate_means(model, by = c("Condition", "ManipulationDistrust = c(-5, 0, 5)"), backend = "marginaleffects") |> 
    mutate(ManipulationDistrust = as.factor(ManipulationDistrust)) |>
    ggplot(aes(x = Condition, y = Mean)) 
  p_trust <- make_plot(p_trust, outcome = outcome) +
    geom_line(aes(group = ManipulationDistrust, color=ManipulationDistrust), 
              position = position_dodge(width = 0.1), linewidth = 1) +
    labs(color = "Doubts about the cover story") +
    scale_color_manual(breaks = c(-5, 0, 5), labels = c("All images are 'AI'", "No doubts about the manipulation", "All images are 'Real'"), values = c("#2196F3", "black", "#E91E63")) +
    ggnewscale::new_scale_color() +
    geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = ManipulationDistrust, color = Condition), 
                    position = position_dodge(width = 0.1), linewidth = 1, size = 1,
                    key_glyph=draw_key_point) +
    scale_color_manual(values = cols)
  
  # By Emotion
  formula <- as.formula(paste0(outcome, " ~ Condition * Emotion + (1|Participant) + (1|Item)"))
  model <- lme4::lmer(formula, data = dftask)
  
  t_emotion <- estimate_contrasts(model, contrast = "Condition", by = "Emotion", backend = "marginaleffects") |> 
    arrange(Emotion, Difference) |> 
    make_table(outcome=outcome, subtitle = "Marginal Contrasts by Emotion")
  
  p_emotion <- estimate_means(model, by = c("Condition", "Emotion"), backend = "marginaleffects") |> 
    mutate(Emotion = fct_rev(Emotion)) |> 
    ggplot(aes(x = Condition, y = Mean))
  p_emotion <- make_plot(p_emotion, outcome = outcome, alpha_title = "Emotion") +
    geom_line(aes(group = Emotion, color=Emotion), 
              position = position_dodge(width = 0.1), linewidth = 1) +
    labs(color = "Emotion") +
    scale_color_manual(values = c("#C5E1A5", "#4CAF50", "#CE93D8", "#9C27B0")) +
    ggnewscale::new_scale_color() +
    geom_pointrange(aes(ymin = CI_low, ymax = CI_high, group = Emotion, color = Condition), 
                    position = position_dodge(width = 0.1), linewidth = 1, size = 1,
                    key_glyph=draw_key_point) +
    scale_color_manual(values = cols) 
  
  
  # Complexity
  formula <- as.formula(paste0(outcome, " ~ Condition * poly(Norms_Complexity, 2) + poly(Norms_Familiarity, 2) + (1|Participant) + (1|Item)"))
  model <- lme4::lmer(formula, data = dftask)

  p_complexity <- estimate_relation(model, by = c("Condition", "Norms_Complexity"), length=20, backend = "marginaleffects") |> 
    ggplot(aes(x = Norms_Complexity, y = Predicted)) 
  p_complexity <- make_plot(p_complexity, outcome = outcome, x_title = "Image Complexity (Norms)") +
    geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend  = FALSE) +
    geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
    scale_color_manual(values = cols) +
    scale_fill_manual(values = cols) +
    scale_x_continuous(labels = scales::percent_format()) 
  p_complexity2 <- estimate_relation(model, by = c("Condition", "Norms_Familiarity"), length=20, backend = "marginaleffects") |> 
    ggplot(aes(x = Norms_Familiarity, y = Predicted)) 
  p_complexity2 <- make_plot(p_complexity2, outcome = outcome, x_title = "Image Familiarity (Norms)") +
    geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend  = FALSE) +
    geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
    scale_color_manual(values = cols) +
    scale_fill_manual(values = cols) +
    scale_x_continuous(labels = scales::percent_format()) +
    theme(axis.title.y = element_blank(), axis.text.y = element_blank(), axis.ticks.y = element_blank(),
          plot.title = element_blank(), plot.subtitle = element_blank())
  p_complexity <- (p_complexity | p_complexity2) + plot_layout(guides = "collect")
  
  # Self-Relevance
  if(outcome != "SelfRelevance") {
    formula <- as.formula(paste0(outcome, " ~ Condition * poly(SelfRelevance, 2) + (1|Participant) + (1|Item)"))
    model <- lme4::lmer(formula, data = filter(dftask, !is.na(SelfRelevance)))
  
    vals <- paste0("SelfRelevance = c(", paste0(as.character(sort(c(0, round(mean(dftask$SelfRelevance, na.rm=TRUE), 2), 0.5, 1))), collapse = ", "), ")")
    t_selfrelevance <- estimate_contrasts(model, contrast = "Condition", by = vals, backend = "marginaleffects") |> 
      arrange(SelfRelevance, Difference) |> 
      make_table(outcome=outcome, subtitle = "Self-Relevance (Marginal Contrasts)")
    t_selfrelevance2 <- estimate_slopes(model, trend = "SelfRelevance", by = c("Condition", "SelfRelevance = c(0, 0.25, 0.5, 0.75, 1)"), backend = "marginaleffects") |> 
      arrange(Condition, SelfRelevance) |> 
      make_table(outcome=outcome, subtitle = "Self-Relevance (Marginal Slopes)")
  
    p_selfrelevance <- estimate_relation(model, by = c("Condition", "SelfRelevance"), length=20, backend = "marginaleffects") |> 
      ggplot(aes(x = SelfRelevance, y = Predicted)) 
    p_selfrelevance <- make_plot(p_selfrelevance, outcome = outcome, x_title = "Self-Relevance") +
      geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend  = FALSE) +
      geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
      scale_color_manual(values = cols) +
      scale_fill_manual(values = cols) +
      scale_x_continuous(labels = scales::percent_format()) 
  } else{
    t_selfrelevance <- "N/A"
    t_selfrelevance2 <- "N/A"
    p_selfrelevance <- "N/A"
  }
  

  # Beauty (Follow-up)
  if(outcome != "Beauty2") {
    formula <- as.formula(paste0("Beauty2 ~ Condition * poly(", outcome, ", 2) + (1|Participant) + (1|Item)"))
    model <- lme4::lmer(formula, data = filter(dftask, !is.na(Beauty2)))
  
    vals <- paste0(outcome, " = c(", paste0(as.character(c(0, 0.25, 0.5, 0.75, 1)), collapse = ", "), ")")
    t_beauty <- estimate_contrasts(model, contrast = "Condition", by = vals, backend = "marginaleffects") |>
      make_table(outcome=outcome, subtitle = "Predicting Follow-up Beauty (Contrasts)")
    t_beauty2 <- estimate_slopes(model, trend = outcome, by = c("Condition", paste0(outcome, "= c(0, 0.25, 0.5, 0.75, 1)")), backend = "marginaleffects") |> 
      arrange(Condition) |> 
      make_table(outcome=outcome, subtitle = "Predicting Follow-up Beauty (Slopes)")
  
    p_beauty <- estimate_relation(model, by = c("Condition", outcome), length=60, backend = "marginaleffects") |>
      ggplot(aes(x = .data[[outcome]], y = Predicted)) +
      geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray")

    if(outcome %in% c("Beauty", "Valence")) p_beauty <- p_beauty + geom_vline(xintercept = 0.5, linetype = "dashed", color = "gray")
    p_beauty <- p_beauty +
      geom_ribbon(aes(ymin = CI_low, ymax = CI_high, fill = Condition), alpha = 0.2, show.legend  = FALSE) +
      geom_line(aes(group = Condition, color = Condition), linewidth = 1) +
      scale_color_manual(values = cols) +
      scale_fill_manual(values = cols) +
      scale_x_continuous(labels = scales::percent_format()) +
      scale_y_continuous(
        breaks = c(0.2, 0.35, 0.5, 0.65, 0.8),
        labels = c("Ugly", "35%", "50%", "65%", "Beautiful")
      ) +
      labs(y = "Beauty (Follow-up)", title = "Beauty (Follow-up)", 
           subtitle = "After being reminded that all artworks were Human originals") +
      coord_cartesian(ylim = c(0.2, 0.8)) +
      theme_minimal() +
      theme(plot.subtitle = element_text(face = "italic"), plot.title = element_text(face = "bold"))
  } else {
    t_beauty <- "N/A"
    t_beauty2 <- "N/A"
    p_beauty <- "N/A"
  }

  list(p_desc=p_desc, 
       t_condition=t_cond, p_condition=p_condition, 
       t_style=t_style, p_style=p_style, 
       t_emotion=t_emotion, p_emotion=p_emotion,
       p_complexity = p_complexity,
       t_trust=t_trust, p_trust=p_trust,
       t_selfrelevance=t_selfrelevance, t_selfrelevance2=t_selfrelevance2, p_selfrelevance=p_selfrelevance,
       t_beauty=t_beauty, t_beauty2=t_beauty2, p_beauty=p_beauty
  )
}
Code
rez_beauty <- make_analysis(dftask, outcome="Beauty")
rez_beauty$p_desc

Condition

Code
rez_beauty$p_condition

Code
rez_beauty$t_condition
Beauty
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14613) p
AI-Generated Human Original -0.06 [-0.07, -0.05] -16.62 < .001
Human Forgery Human Original -0.03 [-0.04, -0.03] -8.99 < .001
AI-Generated Human Forgery -0.03 [-0.03, -0.02] -7.63 < .001

Style

Code
rez_beauty$p_style

Code
rez_beauty$t_style
Beauty
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14613) p
AI-Generated Human Original Abstract and Avant-garde -0.05 [-0.07, -0.04] -7.08 < .001
Human Forgery Human Original Abstract and Avant-garde -0.03 [-0.05, -0.02] -4.33 < .001
AI-Generated Human Forgery Abstract and Avant-garde -0.02 [-0.03, -0.01] -2.79 0.005
AI-Generated Human Original Classical -0.06 [-0.08, -0.05] -8.90 < .001
AI-Generated Human Forgery Classical -0.03 [-0.05, -0.02] -4.72 < .001
Human Forgery Human Original Classical -0.03 [-0.04, -0.02] -4.17 < .001
AI-Generated Human Original Impressionist and Expressionist -0.07 [-0.08, -0.05] -9.29 < .001
Human Forgery Human Original Impressionist and Expressionist -0.04 [-0.05, -0.03] -5.57 < .001
AI-Generated Human Forgery Impressionist and Expressionist -0.03 [-0.04, -0.01] -3.70 < .001
AI-Generated Human Original Romantic and Realism -0.06 [-0.07, -0.04] -7.98 < .001
AI-Generated Human Forgery Romantic and Realism -0.03 [-0.04, -0.02] -4.07 < .001
Human Forgery Human Original Romantic and Realism -0.03 [-0.04, -0.01] -3.92 < .001

Emotion

Code
rez_beauty$p_emotion

Code
rez_beauty$t_emotion
Beauty
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14625) p
AI-Generated Human Original Negative - High intensity -0.05 [-0.07, -0.04] -7.29 < .001
AI-Generated Human Forgery Negative - High intensity -0.04 [-0.05, -0.02] -5.11 < .001
Human Forgery Human Original Negative - High intensity -0.02 [-0.03, 0.00] -2.20 0.028
AI-Generated Human Original Negative - Low intensity -0.07 [-0.08, -0.06] -9.66 < .001
Human Forgery Human Original Negative - Low intensity -0.04 [-0.05, -0.02] -5.12 < .001
AI-Generated Human Forgery Negative - Low intensity -0.03 [-0.05, -0.02] -4.43 < .001
AI-Generated Human Original Positive - High intensity -0.07 [-0.08, -0.05] -9.00 < .001
Human Forgery Human Original Positive - High intensity -0.04 [-0.05, -0.02] -5.32 < .001
AI-Generated Human Forgery Positive - High intensity -0.03 [-0.04, -0.01] -3.74 < .001
AI-Generated Human Original Positive - Low intensity -0.05 [-0.07, -0.04] -7.05 < .001
Human Forgery Human Original Positive - Low intensity -0.04 [-0.05, -0.02] -5.22 < .001
AI-Generated Human Forgery Positive - Low intensity -0.01 [-0.03, 0.00] -1.83 0.067

Complexity and Familiarity

Code
rez_beauty$p_complexity

Manipulation Belief

Code
rez_beauty$p_trust

Code
rez_beauty$t_trust
Beauty
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14613) p
AI-Generated Human Original -5 -0.09 [-0.12, -0.07] -8.17 < .001
Human Forgery Human Original -5 -0.05 [-0.08, -0.03] -4.56 < .001
AI-Generated Human Forgery -5 -0.04 [-0.06, -0.02] -3.62 < .001
AI-Generated Human Original 0 -0.06 [-0.07, -0.05] -16.90 < .001
Human Forgery Human Original 0 -0.03 [-0.04, -0.03] -9.17 < .001
AI-Generated Human Forgery 0 -0.03 [-0.04, -0.02] -7.74 < .001
AI-Generated Human Original 5 -0.03 [-0.05, -0.01] -2.83 0.005
AI-Generated Human Forgery 5 -0.02 [-0.04, 0.01] -1.44 0.150
Human Forgery Human Original 5 -0.01 [-0.04, 0.01] -1.40 0.162

Self-Relevance

Code
rez_beauty$p_selfrelevance

Code
rez_beauty$t_selfrelevance
Beauty
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10548) p
AI-Generated Human Original 0.00 -0.05 [-0.06, -0.04] -8.11 < .001
Human Forgery Human Original 0.00 -0.03 [-0.04, -0.01] -4.03 < .001
AI-Generated Human Forgery 0.00 -0.03 [-0.04, -0.01] -4.06 < .001
AI-Generated Human Original 0.28 -0.06 [-0.07, -0.05] -9.27 < .001
Human Forgery Human Original 0.28 -0.03 [-0.05, -0.02] -5.42 < .001
AI-Generated Human Forgery 0.28 -0.02 [-0.04, -0.01] -3.89 < .001
AI-Generated Human Original 0.50 -0.06 [-0.07, -0.04] -8.22 < .001
Human Forgery Human Original 0.50 -0.03 [-0.05, -0.02] -5.18 < .001
AI-Generated Human Forgery 0.50 -0.02 [-0.03, -0.01] -3.10 0.002
AI-Generated Human Original 1.00 -0.03 [-0.07, 0.00] -1.74 0.083
Human Forgery Human Original 1.00 -0.02 [-0.06, 0.01] -1.25 0.213
AI-Generated Human Forgery 1.00 -0.01 [-0.05, 0.03] -0.44 0.657
Code
rez_beauty$t_selfrelevance2
Beauty
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10548) p
Human Original 0.00 0.32 [ 0.26, 0.39] 9.58 < .001
Human Original 0.25 0.26 [ 0.23, 0.29] 16.37 < .001
Human Original 0.50 0.20 [ 0.18, 0.23] 14.07 < .001
Human Original 0.75 0.14 [ 0.08, 0.21] 4.57 < .001
Human Original 1.00 0.08 [-0.02, 0.18] 1.65 0.098
Human Forgery 0.00 0.29 [ 0.22, 0.35] 8.52 < .001
Human Forgery 0.25 0.25 [ 0.21, 0.28] 15.52 < .001
Human Forgery 0.50 0.21 [ 0.17, 0.24] 13.31 < .001
Human Forgery 0.75 0.16 [ 0.10, 0.23] 4.98 < .001
Human Forgery 1.00 0.12 [ 0.02, 0.23] 2.34 0.020
AI-Generated 0.00 0.29 [ 0.23, 0.36] 8.70 < .001
AI-Generated 0.25 0.26 [ 0.23, 0.29] 16.16 < .001
AI-Generated 0.50 0.22 [ 0.19, 0.25] 15.00 < .001
AI-Generated 0.75 0.19 [ 0.13, 0.25] 5.90 < .001
AI-Generated 1.00 0.15 [ 0.05, 0.26] 2.99 0.003

Beauty 2

Code
rez_beauty$p_beauty

Code
rez_beauty$t_beauty
Beauty
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Beauty Difference 95% CI t(10548) p
Human Forgery Human Original 0.00 0.01 [-0.02, 0.04] 0.61 0.545
AI-Generated Human Original 0.00 0.02 [-0.01, 0.05] 1.29 0.196
AI-Generated Human Forgery 0.00 0.01 [-0.02, 0.04] 0.70 0.484
Human Forgery Human Original 0.25 0.02 [ 0.00, 0.03] 2.61 0.009
AI-Generated Human Original 0.25 0.02 [ 0.01, 0.03] 2.81 0.005
AI-Generated Human Forgery 0.25 0.00 [-0.01, 0.01] 0.17 0.864
Human Forgery Human Original 0.50 0.01 [ 0.00, 0.03] 2.73 0.006
AI-Generated Human Original 0.50 0.01 [ 0.00, 0.02] 2.56 0.011
AI-Generated Human Forgery 0.50 0.00 [-0.01, 0.01] -0.18 0.854
Human Forgery Human Original 0.75 0.00 [-0.01, 0.02] 0.75 0.455
AI-Generated Human Original 0.75 0.01 [ 0.00, 0.02] 1.25 0.211
AI-Generated Human Forgery 0.75 0.00 [-0.01, 0.02] 0.51 0.613
Human Forgery Human Original 1.00 -0.01 [-0.05, 0.02] -0.78 0.437
AI-Generated Human Original 1.00 0.00 [-0.04, 0.04] 0.03 0.975
AI-Generated Human Forgery 1.00 0.01 [-0.03, 0.05] 0.72 0.473
Code
rez_beauty$t_beauty2
Beauty
Predicting Follow-up Beauty (Slopes)
Condition Beauty Slope 95% CI t(10548) p
Human Original 0.00 0.39 [0.30, 0.48] 8.45 < .001
Human Original 0.25 0.44 [0.39, 0.49] 17.36 < .001
Human Original 0.50 0.48 [0.46, 0.51] 35.07 < .001
Human Original 0.75 0.53 [0.47, 0.58] 18.56 < .001
Human Original 1.00 0.57 [0.48, 0.67] 11.49 < .001
Human Forgery 0.00 0.44 [0.35, 0.53] 9.39 < .001
Human Forgery 0.25 0.45 [0.40, 0.50] 18.57 < .001
Human Forgery 0.50 0.46 [0.43, 0.49] 30.92 < .001
Human Forgery 0.75 0.47 [0.41, 0.54] 14.23 < .001
Human Forgery 1.00 0.48 [0.37, 0.59] 8.52 < .001
AI-Generated 0.00 0.39 [0.30, 0.48] 8.41 < .001
AI-Generated 0.25 0.43 [0.38, 0.47] 18.19 < .001
AI-Generated 0.50 0.47 [0.44, 0.50] 30.08 < .001
AI-Generated 0.75 0.50 [0.43, 0.57] 14.37 < .001
AI-Generated 1.00 0.54 [0.42, 0.66] 9.17 < .001

Valence

Code
rez_valence <- make_analysis(dftask, outcome="Valence")
rez_valence$p_desc

Condition

Code
rez_valence$p_condition

Code
rez_valence$t_condition
Valence
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14613) p
AI-Generated Human Original -0.06 [-0.07, -0.05] -16.16 < .001
Human Forgery Human Original -0.03 [-0.04, -0.03] -8.60 < .001
AI-Generated Human Forgery -0.03 [-0.04, -0.02] -7.56 < .001

Style

Code
rez_valence$p_style

Code
rez_valence$t_style
Valence
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14613) p
AI-Generated Human Original Abstract and Avant-garde -0.05 [-0.07, -0.04] -6.90 < .001
Human Forgery Human Original Abstract and Avant-garde -0.03 [-0.04, -0.01] -3.50 < .001
AI-Generated Human Forgery Abstract and Avant-garde -0.03 [-0.04, -0.01] -3.43 < .001
AI-Generated Human Original Classical -0.07 [-0.08, -0.05] -8.92 < .001
AI-Generated Human Forgery Classical -0.03 [-0.05, -0.02] -4.48 < .001
Human Forgery Human Original Classical -0.03 [-0.05, -0.02] -4.43 < .001
AI-Generated Human Original Impressionist and Expressionist -0.07 [-0.08, -0.05] -8.99 < .001
Human Forgery Human Original Impressionist and Expressionist -0.04 [-0.05, -0.02] -4.77 < .001
AI-Generated Human Forgery Impressionist and Expressionist -0.03 [-0.05, -0.02] -4.20 < .001
AI-Generated Human Original Romantic and Realism -0.06 [-0.07, -0.04] -7.51 < .001
Human Forgery Human Original Romantic and Realism -0.03 [-0.05, -0.02] -4.50 < .001
AI-Generated Human Forgery Romantic and Realism -0.02 [-0.04, -0.01] -3.02 0.003

Emotion

Code
rez_valence$p_emotion

Code
rez_valence$t_emotion
Valence
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14625) p
AI-Generated Human Original Negative - High intensity -0.05 [-0.06, -0.03] -6.19 < .001
AI-Generated Human Forgery Negative - High intensity -0.04 [-0.05, -0.02] -4.87 < .001
Human Forgery Human Original Negative - High intensity -0.01 [-0.03, 0.00] -1.33 0.182
AI-Generated Human Original Negative - Low intensity -0.07 [-0.08, -0.05] -8.67 < .001
Human Forgery Human Original Negative - Low intensity -0.04 [-0.05, -0.02] -5.00 < .001
AI-Generated Human Forgery Negative - Low intensity -0.03 [-0.04, -0.01] -3.58 < .001
AI-Generated Human Original Positive - High intensity -0.08 [-0.09, -0.06] -10.14 < .001
Human Forgery Human Original Positive - High intensity -0.05 [-0.06, -0.03] -6.09 < .001
AI-Generated Human Forgery Positive - High intensity -0.03 [-0.05, -0.02] -4.11 < .001
AI-Generated Human Original Positive - Low intensity -0.06 [-0.07, -0.04] -7.13 < .001
Human Forgery Human Original Positive - Low intensity -0.04 [-0.05, -0.02] -4.68 < .001
AI-Generated Human Forgery Positive - Low intensity -0.02 [-0.03, 0.00] -2.46 0.014

Complexity and Familiarity

Code
rez_valence$p_complexity

Manipulation Belief

Code
rez_valence$p_trust

Code
rez_valence$t_trust
Valence
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14613) p
AI-Generated Human Original -5 -0.07 [-0.09, -0.04] -5.62 < .001
Human Forgery Human Original -5 -0.04 [-0.06, -0.02] -3.35 < .001
AI-Generated Human Forgery -5 -0.03 [-0.05, 0.00] -2.28 0.023
AI-Generated Human Original 0 -0.06 [-0.07, -0.05] -16.06 < .001
Human Forgery Human Original 0 -0.03 [-0.04, -0.03] -8.61 < .001
AI-Generated Human Forgery 0 -0.03 [-0.04, -0.02] -7.46 < .001
AI-Generated Human Original 5 -0.06 [-0.08, -0.03] -5.05 < .001
AI-Generated Human Forgery 5 -0.03 [-0.05, -0.01] -2.72 0.007
Human Forgery Human Original 5 -0.03 [-0.05, 0.00] -2.34 0.020

Self-Relevance

Code
rez_valence$p_selfrelevance

Code
rez_valence$t_selfrelevance
Valence
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10548) p
AI-Generated Human Original 0.00 -0.04 [-0.06, -0.03] -6.43 < .001
AI-Generated Human Forgery 0.00 -0.02 [-0.04, -0.01] -3.43 < .001
Human Forgery Human Original 0.00 -0.02 [-0.03, -0.01] -2.99 0.003
AI-Generated Human Original 0.28 -0.06 [-0.08, -0.05] -9.46 < .001
Human Forgery Human Original 0.28 -0.04 [-0.05, -0.03] -6.17 < .001
AI-Generated Human Forgery 0.28 -0.02 [-0.03, -0.01] -3.33 < .001
AI-Generated Human Original 0.50 -0.07 [-0.08, -0.05] -9.45 < .001
Human Forgery Human Original 0.50 -0.04 [-0.06, -0.03] -6.21 < .001
AI-Generated Human Forgery 0.50 -0.02 [-0.04, -0.01] -3.31 < .001
AI-Generated Human Original 1.00 -0.05 [-0.09, -0.01] -2.63 0.009
AI-Generated Human Forgery 1.00 -0.04 [-0.08, 0.00] -1.78 0.074
Human Forgery Human Original 1.00 -0.02 [-0.06, 0.03] -0.76 0.448
Code
rez_valence$t_selfrelevance2
Valence
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10548) p
Human Original 0.00 0.34 [ 0.27, 0.41] 9.42 < .001
Human Original 0.25 0.27 [ 0.23, 0.30] 15.52 < .001
Human Original 0.50 0.19 [ 0.16, 0.22] 12.52 < .001
Human Original 0.75 0.12 [ 0.05, 0.19] 3.58 < .001
Human Original 1.00 0.05 [-0.06, 0.15] 0.87 0.383
Human Forgery 0.00 0.24 [ 0.17, 0.31] 6.65 < .001
Human Forgery 0.25 0.22 [ 0.19, 0.25] 12.92 < .001
Human Forgery 0.50 0.20 [ 0.17, 0.23] 12.01 < .001
Human Forgery 0.75 0.18 [ 0.11, 0.25] 5.03 < .001
Human Forgery 1.00 0.16 [ 0.05, 0.27] 2.77 0.006
AI-Generated 0.00 0.25 [ 0.18, 0.32] 7.09 < .001
AI-Generated 0.25 0.22 [ 0.18, 0.25] 12.88 < .001
AI-Generated 0.50 0.18 [ 0.15, 0.21] 11.56 < .001
AI-Generated 0.75 0.15 [ 0.08, 0.22] 4.36 < .001
AI-Generated 1.00 0.11 [ 0.01, 0.22] 2.07 0.038

Beauty 2

Code
rez_valence$p_beauty

Code
rez_valence$t_beauty
Valence
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Valence Difference 95% CI t(10548) p
Human Forgery Human Original 0.00 0.01 [-0.01, 0.04] 1.04 0.298
AI-Generated Human Original 0.00 0.03 [ 0.00, 0.05] 1.94 0.052
AI-Generated Human Forgery 0.00 0.01 [-0.01, 0.04] 0.90 0.366
Human Forgery Human Original 0.25 0.01 [ 0.00, 0.03] 2.42 0.016
AI-Generated Human Original 0.25 0.02 [ 0.01, 0.03] 2.82 0.005
AI-Generated Human Forgery 0.25 0.00 [-0.01, 0.01] 0.38 0.701
Human Forgery Human Original 0.50 0.01 [ 0.00, 0.02] 1.90 0.058
AI-Generated Human Original 0.50 0.01 [ 0.00, 0.02] 1.37 0.170
AI-Generated Human Forgery 0.50 0.00 [-0.01, 0.01] -0.53 0.598
Human Forgery Human Original 0.75 0.00 [-0.01, 0.01] 0.23 0.816
AI-Generated Human Original 0.75 0.00 [-0.02, 0.01] -0.32 0.751
AI-Generated Human Forgery 0.75 0.00 [-0.02, 0.01] -0.51 0.611
Human Forgery Human Original 1.00 -0.01 [-0.05, 0.02] -0.73 0.463
AI-Generated Human Original 1.00 -0.01 [-0.05, 0.02] -0.68 0.495
AI-Generated Human Forgery 1.00 0.00 [-0.04, 0.04] 0.01 0.989
Code
rez_valence$t_beauty2
Valence
Predicting Follow-up Beauty (Slopes)
Condition Valence Slope 95% CI t(10548) p
Human Original 0.00 0.35 [0.26, 0.44] 7.90 < .001
Human Original 0.25 0.37 [0.32, 0.42] 14.96 < .001
Human Original 0.50 0.38 [0.36, 0.41] 28.54 < .001
Human Original 0.75 0.40 [0.35, 0.45] 14.84 < .001
Human Original 1.00 0.41 [0.32, 0.51] 8.81 < .001
Human Forgery 0.00 0.36 [0.28, 0.45] 8.11 < .001
Human Forgery 0.25 0.36 [0.31, 0.41] 15.12 < .001
Human Forgery 0.50 0.36 [0.33, 0.38] 24.53 < .001
Human Forgery 0.75 0.35 [0.29, 0.41] 11.52 < .001
Human Forgery 1.00 0.35 [0.25, 0.45] 6.66 < .001
AI-Generated 0.00 0.32 [0.23, 0.40] 7.13 < .001
AI-Generated 0.25 0.33 [0.29, 0.37] 14.46 < .001
AI-Generated 0.50 0.34 [0.32, 0.37] 23.26 < .001
AI-Generated 0.75 0.36 [0.29, 0.42] 10.91 < .001
AI-Generated 1.00 0.37 [0.26, 0.48] 6.64 < .001

Meaning

Code
rez_meaning <- make_analysis(dftask, outcome="Meaning")
rez_meaning$p_desc

Condition

Code
rez_meaning$p_condition

Code
rez_meaning$t_condition
Meaning
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14613) p
AI-Generated Human Original -0.10 [-0.11, -0.09] -23.28 < .001
AI-Generated Human Forgery -0.06 [-0.07, -0.05] -14.02 < .001
Human Forgery Human Original -0.04 [-0.05, -0.03] -9.26 < .001

Style

Code
rez_meaning$p_style

Code
rez_meaning$t_style
Meaning
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14613) p
AI-Generated Human Original Abstract and Avant-garde -0.08 [-0.10, -0.06] -9.20 < .001
AI-Generated Human Forgery Abstract and Avant-garde -0.04 [-0.06, -0.03] -4.91 < .001
Human Forgery Human Original Abstract and Avant-garde -0.04 [-0.05, -0.02] -4.33 < .001
AI-Generated Human Original Classical -0.11 [-0.13, -0.09] -12.84 < .001
AI-Generated Human Forgery Classical -0.07 [-0.08, -0.05] -7.53 < .001
Human Forgery Human Original Classical -0.05 [-0.06, -0.03] -5.29 < .001
AI-Generated Human Original Impressionist and Expressionist -0.11 [-0.12, -0.09] -12.19 < .001
AI-Generated Human Forgery Impressionist and Expressionist -0.06 [-0.07, -0.04] -6.44 < .001
Human Forgery Human Original Impressionist and Expressionist -0.05 [-0.07, -0.03] -5.72 < .001
AI-Generated Human Original Romantic and Realism -0.11 [-0.12, -0.09] -12.34 < .001
AI-Generated Human Forgery Romantic and Realism -0.08 [-0.10, -0.06] -9.17 < .001
Human Forgery Human Original Romantic and Realism -0.03 [-0.04, -0.01] -3.18 0.001

Emotion

Code
rez_meaning$p_emotion

Code
rez_meaning$t_emotion
Meaning
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14625) p
AI-Generated Human Original Negative - High intensity -0.13 [-0.14, -0.11] -14.27 < .001
AI-Generated Human Forgery Negative - High intensity -0.08 [-0.10, -0.06] -9.09 < .001
Human Forgery Human Original Negative - High intensity -0.05 [-0.06, -0.03] -5.21 < .001
AI-Generated Human Original Negative - Low intensity -0.08 [-0.10, -0.07] -9.68 < .001
AI-Generated Human Forgery Negative - Low intensity -0.05 [-0.07, -0.04] -6.11 < .001
Human Forgery Human Original Negative - Low intensity -0.03 [-0.05, -0.01] -3.48 < .001
AI-Generated Human Original Positive - High intensity -0.11 [-0.12, -0.09] -11.99 < .001
AI-Generated Human Forgery Positive - High intensity -0.06 [-0.07, -0.04] -6.38 < .001
Human Forgery Human Original Positive - High intensity -0.05 [-0.07, -0.03] -5.65 < .001
AI-Generated Human Original Positive - Low intensity -0.09 [-0.11, -0.07] -10.22 < .001
AI-Generated Human Forgery Positive - Low intensity -0.05 [-0.07, -0.04] -6.27 < .001
Human Forgery Human Original Positive - Low intensity -0.04 [-0.05, -0.02] -3.99 < .001

Complexity and Familiarity

Code
rez_meaning$p_complexity

Manipulation Belief

Code
rez_meaning$p_trust

Code
rez_meaning$t_trust
Meaning
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14613) p
AI-Generated Human Original -5 -0.11 [-0.14, -0.08] -8.06 < .001
Human Forgery Human Original -5 -0.06 [-0.09, -0.04] -4.50 < .001
AI-Generated Human Forgery -5 -0.05 [-0.08, -0.02] -3.58 < .001
AI-Generated Human Original 0 -0.10 [-0.11, -0.09] -23.13 < .001
AI-Generated Human Forgery 0 -0.06 [-0.07, -0.05] -13.73 < .001
Human Forgery Human Original 0 -0.04 [-0.05, -0.03] -9.41 < .001
AI-Generated Human Original 5 -0.09 [-0.12, -0.07] -7.30 < .001
AI-Generated Human Forgery 5 -0.07 [-0.10, -0.05] -5.68 < .001
Human Forgery Human Original 5 -0.02 [-0.05, 0.00] -1.63 0.103

Self-Relevance

Code
rez_meaning$p_selfrelevance

Code
rez_meaning$t_selfrelevance
Meaning
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10548) p
AI-Generated Human Original 0.00 -0.09 [-0.10, -0.07] -10.98 < .001
AI-Generated Human Forgery 0.00 -0.05 [-0.06, -0.03] -6.24 < .001
Human Forgery Human Original 0.00 -0.04 [-0.05, -0.02] -4.72 < .001
AI-Generated Human Original 0.28 -0.10 [-0.11, -0.08] -12.72 < .001
AI-Generated Human Forgery 0.28 -0.05 [-0.07, -0.04] -7.12 < .001
Human Forgery Human Original 0.28 -0.04 [-0.06, -0.03] -5.66 < .001
AI-Generated Human Original 0.50 -0.09 [-0.11, -0.08] -11.51 < .001
AI-Generated Human Forgery 0.50 -0.05 [-0.07, -0.03] -6.15 < .001
Human Forgery Human Original 0.50 -0.04 [-0.06, -0.03] -5.45 < .001
AI-Generated Human Original 1.00 -0.06 [-0.11, -0.02] -2.77 0.006
Human Forgery Human Original 1.00 -0.04 [-0.09, 0.00] -1.83 0.067
AI-Generated Human Forgery 1.00 -0.02 [-0.07, 0.03] -0.87 0.386
Code
rez_meaning$t_selfrelevance2
Meaning
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10548) p
Human Original 0.00 0.20 [ 0.12, 0.29] 4.99 < .001
Human Original 0.25 0.18 [ 0.14, 0.21] 8.93 < .001
Human Original 0.50 0.15 [ 0.11, 0.18] 8.25 < .001
Human Original 0.75 0.12 [ 0.04, 0.19] 3.02 0.003
Human Original 1.00 0.09 [-0.04, 0.21] 1.38 0.168
Human Forgery 0.00 0.18 [ 0.10, 0.26] 4.45 < .001
Human Forgery 0.25 0.16 [ 0.12, 0.20] 8.28 < .001
Human Forgery 0.50 0.14 [ 0.10, 0.18] 7.40 < .001
Human Forgery 0.75 0.12 [ 0.04, 0.20] 2.90 0.004
Human Forgery 1.00 0.09 [-0.03, 0.22] 1.47 0.141
AI-Generated 0.00 0.15 [ 0.07, 0.23] 3.67 < .001
AI-Generated 0.25 0.16 [ 0.12, 0.20] 8.15 < .001
AI-Generated 0.50 0.17 [ 0.13, 0.20] 9.20 < .001
AI-Generated 0.75 0.17 [ 0.10, 0.25] 4.50 < .001
AI-Generated 1.00 0.18 [ 0.06, 0.31] 2.92 0.003

Beauty 2

Code
rez_meaning$p_beauty

Code
rez_meaning$t_beauty
Meaning
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Meaning Difference 95% CI t(10548) p
Human Forgery Human Original 0.00 0.01 [-0.01, 0.03] 0.82 0.411
AI-Generated Human Original 0.00 0.01 [-0.01, 0.02] 0.63 0.529
AI-Generated Human Forgery 0.00 0.00 [-0.02, 0.02] -0.24 0.809
Human Forgery Human Original 0.25 0.01 [ 0.00, 0.02] 1.42 0.156
AI-Generated Human Original 0.25 0.01 [ 0.00, 0.02] 1.57 0.117
AI-Generated Human Forgery 0.25 0.00 [-0.01, 0.01] 0.16 0.872
Human Forgery Human Original 0.50 0.00 [-0.01, 0.02] 0.71 0.475
AI-Generated Human Original 0.50 0.01 [-0.01, 0.02] 0.93 0.351
AI-Generated Human Forgery 0.50 0.00 [-0.01, 0.01] 0.23 0.815
Human Forgery Human Original 0.75 0.00 [-0.02, 0.01] -0.51 0.608
AI-Generated Human Original 0.75 0.00 [-0.02, 0.01] -0.56 0.577
AI-Generated Human Forgery 0.75 0.00 [-0.02, 0.01] -0.07 0.942
Human Forgery Human Original 1.00 -0.02 [-0.05, 0.02] -0.92 0.357
AI-Generated Human Original 1.00 -0.02 [-0.06, 0.01] -1.15 0.249
AI-Generated Human Forgery 1.00 -0.01 [-0.04, 0.03] -0.27 0.785
Code
rez_meaning$t_beauty2
Meaning
Predicting Follow-up Beauty (Slopes)
Condition Meaning Slope 95% CI t(10548) p
Human Original 0.00 0.28 [ 0.20, 0.35] 7.34 < .001
Human Original 0.25 0.23 [ 0.19, 0.27] 11.49 < .001
Human Original 0.50 0.18 [ 0.15, 0.21] 13.87 < .001
Human Original 0.75 0.13 [ 0.08, 0.18] 4.79 < .001
Human Original 1.00 0.08 [-0.01, 0.17] 1.77 0.076
Human Forgery 0.00 0.29 [ 0.21, 0.36] 7.69 < .001
Human Forgery 0.25 0.22 [ 0.18, 0.26] 11.65 < .001
Human Forgery 0.50 0.16 [ 0.13, 0.18] 11.07 < .001
Human Forgery 0.75 0.09 [ 0.03, 0.15] 3.02 0.003
Human Forgery 1.00 0.03 [-0.07, 0.12] 0.51 0.608
AI-Generated 0.00 0.31 [ 0.23, 0.38] 8.25 < .001
AI-Generated 0.25 0.23 [ 0.19, 0.27] 12.57 < .001
AI-Generated 0.50 0.15 [ 0.12, 0.18] 10.12 < .001
AI-Generated 0.75 0.08 [ 0.01, 0.14] 2.39 0.017
AI-Generated 1.00 0.00 [-0.10, 0.11] 0.04 0.971

Worth

Code
rez_worth <- make_analysis(dftask, outcome="Worth")
rez_worth$p_desc

Condition

Code
rez_worth$p_condition

Code
rez_worth$t_condition
Worth
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14613) p
AI-Generated Human Original -0.12 [-0.12, -0.11] -33.56 < .001
Human Forgery Human Original -0.06 [-0.07, -0.06] -18.68 < .001
AI-Generated Human Forgery -0.05 [-0.06, -0.04] -14.89 < .001

Style

Code
rez_worth$p_style

Code
rez_worth$t_style
Worth
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14613) p
AI-Generated Human Original Abstract and Avant-garde -0.09 [-0.11, -0.08] -13.36 < .001
Human Forgery Human Original Abstract and Avant-garde -0.05 [-0.06, -0.03] -6.79 < .001
AI-Generated Human Forgery Abstract and Avant-garde -0.05 [-0.06, -0.03] -6.63 < .001
AI-Generated Human Original Classical -0.13 [-0.14, -0.12] -18.99 < .001
Human Forgery Human Original Classical -0.08 [-0.09, -0.06] -10.92 < .001
AI-Generated Human Forgery Classical -0.06 [-0.07, -0.04] -8.04 < .001
AI-Generated Human Original Impressionist and Expressionist -0.12 [-0.14, -0.11] -17.78 < .001
Human Forgery Human Original Impressionist and Expressionist -0.07 [-0.09, -0.06] -10.53 < .001
AI-Generated Human Forgery Impressionist and Expressionist -0.05 [-0.06, -0.04] -7.22 < .001
AI-Generated Human Original Romantic and Realism -0.12 [-0.13, -0.10] -16.99 < .001
Human Forgery Human Original Romantic and Realism -0.06 [-0.08, -0.05] -9.12 < .001
AI-Generated Human Forgery Romantic and Realism -0.05 [-0.07, -0.04] -7.89 < .001

Emotion

Code
rez_worth$p_emotion
Ignoring unknown labels:
• alpha : "Emotion"

Code
rez_worth$t_emotion
Worth
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14625) p
AI-Generated Human Original Negative - High intensity -0.11 [-0.12, -0.09] -15.39 < .001
AI-Generated Human Forgery Negative - High intensity -0.06 [-0.07, -0.04] -7.94 < .001
Human Forgery Human Original Negative - High intensity -0.05 [-0.07, -0.04] -7.50 < .001
AI-Generated Human Original Negative - Low intensity -0.12 [-0.13, -0.11] -17.37 < .001
Human Forgery Human Original Negative - Low intensity -0.06 [-0.08, -0.05] -9.11 < .001
AI-Generated Human Forgery Negative - Low intensity -0.06 [-0.07, -0.04] -8.07 < .001
AI-Generated Human Original Positive - High intensity -0.12 [-0.13, -0.10] -16.60 < .001
Human Forgery Human Original Positive - High intensity -0.07 [-0.09, -0.06] -10.63 < .001
AI-Generated Human Forgery Positive - High intensity -0.04 [-0.06, -0.03] -6.09 < .001
AI-Generated Human Original Positive - Low intensity -0.12 [-0.13, -0.11] -17.13 < .001
Human Forgery Human Original Positive - Low intensity -0.07 [-0.08, -0.05] -9.79 < .001
AI-Generated Human Forgery Positive - Low intensity -0.05 [-0.06, -0.04] -7.39 < .001

Complexity and Familiarity

Code
rez_worth$p_complexity

Manipulation Belief

Code
rez_worth$p_trust

Code
rez_worth$t_trust
Worth
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14613) p
AI-Generated Human Original -5 -0.13 [-0.15, -0.11] -11.78 < .001
Human Forgery Human Original -5 -0.07 [-0.09, -0.05] -6.46 < .001
AI-Generated Human Forgery -5 -0.06 [-0.08, -0.04] -5.35 < .001
AI-Generated Human Original 0 -0.12 [-0.12, -0.11] -33.37 < .001
Human Forgery Human Original 0 -0.06 [-0.07, -0.06] -18.56 < .001
AI-Generated Human Forgery 0 -0.05 [-0.06, -0.04] -14.82 < .001
AI-Generated Human Original 5 -0.10 [-0.12, -0.08] -10.37 < .001
Human Forgery Human Original 5 -0.06 [-0.08, -0.04] -5.89 < .001
AI-Generated Human Forgery 5 -0.04 [-0.06, -0.03] -4.50 < .001

Self-Relevance

Code
rez_worth$p_selfrelevance

Code
rez_worth$t_selfrelevance
Worth
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10548) p
AI-Generated Human Original 0.00 -0.09 [-0.10, -0.07] -14.27 < .001
Human Forgery Human Original 0.00 -0.05 [-0.06, -0.04] -8.24 < .001
AI-Generated Human Forgery 0.00 -0.04 [-0.05, -0.02] -5.98 < .001
AI-Generated Human Original 0.28 -0.10 [-0.11, -0.09] -17.70 < .001
Human Forgery Human Original 0.28 -0.07 [-0.08, -0.05] -11.43 < .001
AI-Generated Human Forgery 0.28 -0.04 [-0.05, -0.03] -6.34 < .001
AI-Generated Human Original 0.50 -0.11 [-0.13, -0.10] -18.03 < .001
Human Forgery Human Original 0.50 -0.07 [-0.08, -0.06] -11.48 < .001
AI-Generated Human Forgery 0.50 -0.04 [-0.05, -0.03] -6.68 < .001
AI-Generated Human Original 1.00 -0.14 [-0.17, -0.10] -7.64 < .001
AI-Generated Human Forgery 1.00 -0.07 [-0.11, -0.03] -3.75 < .001
Human Forgery Human Original 1.00 -0.07 [-0.10, -0.03] -3.66 < .001
Code
rez_worth$t_selfrelevance2
Worth
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10548) p
Human Original 0.00 0.23 [0.16, 0.29] 7.08 < .001
Human Original 0.25 0.21 [0.18, 0.24] 13.71 < .001
Human Original 0.50 0.19 [0.16, 0.22] 14.02 < .001
Human Original 0.75 0.17 [0.12, 0.23] 5.87 < .001
Human Original 1.00 0.16 [0.06, 0.25] 3.27 0.001
Human Forgery 0.00 0.15 [0.09, 0.22] 4.84 < .001
Human Forgery 0.25 0.16 [0.13, 0.19] 10.93 < .001
Human Forgery 0.50 0.17 [0.15, 0.20] 11.96 < .001
Human Forgery 0.75 0.18 [0.12, 0.24] 5.91 < .001
Human Forgery 1.00 0.19 [0.10, 0.29] 3.88 < .001
AI-Generated 0.00 0.16 [0.10, 0.23] 5.22 < .001
AI-Generated 0.25 0.15 [0.12, 0.18] 10.12 < .001
AI-Generated 0.50 0.14 [0.11, 0.17] 9.97 < .001
AI-Generated 0.75 0.13 [0.07, 0.19] 4.21 < .001
AI-Generated 1.00 0.11 [0.02, 0.21] 2.35 0.019

Beauty 2

Code
rez_worth$p_beauty

Code
rez_worth$t_beauty
Worth
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Worth Difference 95% CI t(10548) p
Human Forgery Human Original 0.00 0.02 [ 0.00, 0.03] 2.29 0.022
AI-Generated Human Original 0.00 0.01 [ 0.00, 0.03] 2.20 0.028
AI-Generated Human Forgery 0.00 0.00 [-0.01, 0.01] -0.15 0.880
Human Forgery Human Original 0.25 0.02 [ 0.00, 0.03] 2.78 0.006
AI-Generated Human Original 0.25 0.03 [ 0.02, 0.04] 5.08 < .001
AI-Generated Human Forgery 0.25 0.01 [ 0.00, 0.03] 2.32 0.020
Human Forgery Human Original 0.50 0.01 [ 0.00, 0.03] 2.18 0.029
AI-Generated Human Original 0.50 0.02 [ 0.01, 0.04] 2.83 0.005
AI-Generated Human Forgery 0.50 0.01 [-0.01, 0.02] 0.82 0.412
Human Forgery Human Original 0.75 0.01 [-0.02, 0.04] 0.69 0.493
AI-Generated Human Original 0.75 -0.02 [-0.05, 0.02] -0.97 0.331
AI-Generated Human Forgery 0.75 -0.03 [-0.06, 0.01] -1.37 0.170
Human Forgery Human Original 1.00 0.00 [-0.07, 0.07] 0.05 0.961
AI-Generated Human Original 1.00 -0.08 [-0.16, -0.01] -2.09 0.036
AI-Generated Human Forgery 1.00 -0.08 [-0.17, 0.00] -1.88 0.060
Code
rez_worth$t_beauty2
Worth
Predicting Follow-up Beauty (Slopes)
Condition Worth Slope 95% CI t(10548) p
Human Original 0.00 0.47 [ 0.40, 0.54] 13.25 < .001
Human Original 0.25 0.37 [ 0.34, 0.40] 22.48 < .001
Human Original 0.50 0.27 [ 0.23, 0.30] 13.53 < .001
Human Original 0.75 0.16 [ 0.08, 0.24] 4.03 < .001
Human Original 1.00 0.06 [-0.06, 0.18] 0.94 0.349
Human Forgery 0.00 0.48 [ 0.41, 0.56] 12.23 < .001
Human Forgery 0.25 0.37 [ 0.33, 0.40] 22.06 < .001
Human Forgery 0.50 0.25 [ 0.19, 0.31] 8.43 < .001
Human Forgery 0.75 0.14 [ 0.02, 0.25] 2.33 0.020
Human Forgery 1.00 0.02 [-0.15, 0.19] 0.22 0.823
AI-Generated 0.00 0.60 [ 0.51, 0.68] 14.48 < .001
AI-Generated 0.25 0.38 [ 0.35, 0.42] 21.78 < .001
AI-Generated 0.50 0.17 [ 0.10, 0.24] 4.84 < .001
AI-Generated 0.75 -0.04 [-0.18, 0.09] -0.67 0.505
AI-Generated 1.00 -0.26 [-0.45, -0.06] -2.58 0.010

Syntheticness

Code
rez_reality <- make_analysis(filter(dftask, !is.na(Reality)), outcome="Reality")
rez_reality$p_desc

Condition

Code
rez_reality$p_condition

Code
rez_reality$t_condition
Reality
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14325) p
AI-Generated Human Original -0.05 [-0.06, -0.04] -8.40 < .001
AI-Generated Human Forgery -0.04 [-0.05, -0.03] -6.14 < .001
Human Forgery Human Original -0.01 [-0.03, 0.00] -2.26 0.024

Style

Code
rez_reality$p_style

Code
rez_reality$t_style
Reality
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14325) p
AI-Generated Human Original Abstract and Avant-garde -0.05 [-0.08, -0.03] -4.27 < .001
AI-Generated Human Forgery Abstract and Avant-garde -0.03 [-0.05, 0.00] -2.34 0.019
Human Forgery Human Original Abstract and Avant-garde -0.02 [-0.05, 0.00] -1.94 0.052
AI-Generated Human Original Classical -0.06 [-0.08, -0.03] -4.73 < .001
AI-Generated Human Forgery Classical -0.04 [-0.06, -0.01] -3.00 0.003
Human Forgery Human Original Classical -0.02 [-0.04, 0.00] -1.73 0.084
AI-Generated Human Original Impressionist and Expressionist -0.05 [-0.07, -0.03] -4.06 < .001
AI-Generated Human Forgery Impressionist and Expressionist -0.04 [-0.06, -0.01] -3.01 0.003
Human Forgery Human Original Impressionist and Expressionist -0.01 [-0.04, 0.01] -1.04 0.301
AI-Generated Human Forgery Romantic and Realism -0.05 [-0.07, -0.02] -3.93 < .001
AI-Generated Human Original Romantic and Realism -0.05 [-0.07, -0.02] -3.74 < .001
Human Forgery Human Original Romantic and Realism 0.00 [-0.02, 0.03] 0.19 0.847

Emotion

Code
rez_reality$p_emotion

Code
rez_reality$t_emotion
Reality
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14337) p
AI-Generated Human Original Negative - High intensity -0.06 [-0.08, -0.03] -4.74 < .001
AI-Generated Human Forgery Negative - High intensity -0.04 [-0.06, -0.02] -3.19 0.001
Human Forgery Human Original Negative - High intensity -0.02 [-0.04, 0.00] -1.56 0.118
AI-Generated Human Forgery Negative - Low intensity -0.04 [-0.07, -0.02] -3.65 < .001
AI-Generated Human Original Negative - Low intensity -0.04 [-0.07, -0.02] -3.63 < .001
Human Forgery Human Original Negative - Low intensity 0.00 [-0.02, 0.02] 0.04 0.970
AI-Generated Human Original Positive - High intensity -0.06 [-0.09, -0.04] -5.15 < .001
AI-Generated Human Forgery Positive - High intensity -0.03 [-0.06, -0.01] -2.61 0.009
Human Forgery Human Original Positive - High intensity -0.03 [-0.05, -0.01] -2.57 0.010
AI-Generated Human Original Positive - Low intensity -0.04 [-0.06, -0.01] -3.12 0.002
AI-Generated Human Forgery Positive - Low intensity -0.03 [-0.06, -0.01] -2.79 0.005
Human Forgery Human Original Positive - Low intensity 0.00 [-0.03, 0.02] -0.36 0.722

Complexity and Familiarity

Code
rez_reality$p_complexity

Manipulation Belief

Code
rez_reality$p_trust

Code
rez_reality$t_trust
Reality
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14325) p
AI-Generated Human Original -5 -0.07 [-0.10, -0.03] -3.34 < .001
AI-Generated Human Forgery -5 -0.05 [-0.09, -0.01] -2.70 0.007
Human Forgery Human Original -5 -0.01 [-0.05, 0.03] -0.65 0.517
AI-Generated Human Original 0 -0.05 [-0.06, -0.04] -8.42 < .001
AI-Generated Human Forgery 0 -0.04 [-0.05, -0.03] -6.20 < .001
Human Forgery Human Original 0 -0.01 [-0.03, 0.00] -2.22 0.026
AI-Generated Human Original 5 -0.04 [-0.07, 0.00] -2.14 0.033
AI-Generated Human Forgery 5 -0.02 [-0.06, 0.01] -1.32 0.188
Human Forgery Human Original 5 -0.01 [-0.05, 0.02] -0.82 0.410

Self-Relevance

Code
rez_reality$p_selfrelevance

Code
rez_reality$t_selfrelevance
Reality
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10404) p
AI-Generated Human Original 0.00 -0.06 [-0.08, -0.03] -5.01 < .001
AI-Generated Human Forgery 0.00 -0.05 [-0.07, -0.03] -4.54 < .001
Human Forgery Human Original 0.00 -0.01 [-0.03, 0.02] -0.48 0.632
AI-Generated Human Original 0.28 -0.04 [-0.06, -0.02] -3.56 < .001
AI-Generated Human Forgery 0.28 -0.03 [-0.05, -0.01] -2.60 0.009
Human Forgery Human Original 0.28 -0.01 [-0.03, 0.01] -0.97 0.331
AI-Generated Human Original 0.50 -0.03 [-0.06, -0.01] -3.00 0.003
AI-Generated Human Forgery 0.50 -0.02 [-0.04, 0.00] -1.70 0.089
Human Forgery Human Original 0.50 -0.02 [-0.04, 0.01] -1.32 0.186
AI-Generated Human Original 1.00 -0.07 [-0.13, 0.00] -1.97 0.049
AI-Generated Human Forgery 1.00 -0.03 [-0.10, 0.03] -1.01 0.315
Human Forgery Human Original 1.00 -0.03 [-0.10, 0.04] -0.90 0.367
Code
rez_reality$t_selfrelevance2
Reality
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10404) p
Human Original 0.00 0.15 [ 0.03, 0.26] 2.55 0.011
Human Original 0.25 0.14 [ 0.09, 0.19] 5.11 < .001
Human Original 0.50 0.13 [ 0.08, 0.18] 5.36 < .001
Human Original 0.75 0.13 [ 0.02, 0.23] 2.36 0.018
Human Original 1.00 0.12 [-0.05, 0.29] 1.36 0.173
Human Forgery 0.00 0.13 [ 0.02, 0.24] 2.31 0.021
Human Forgery 0.25 0.12 [ 0.07, 0.17] 4.49 < .001
Human Forgery 0.50 0.11 [ 0.06, 0.16] 4.11 < .001
Human Forgery 0.75 0.09 [-0.02, 0.21] 1.67 0.094
Human Forgery 1.00 0.08 [-0.10, 0.26] 0.91 0.362
AI-Generated 0.00 0.24 [ 0.13, 0.35] 4.21 < .001
AI-Generated 0.25 0.18 [ 0.13, 0.23] 6.75 < .001
AI-Generated 0.50 0.12 [ 0.07, 0.17] 4.88 < .001
AI-Generated 0.75 0.06 [-0.04, 0.17] 1.19 0.235
AI-Generated 1.00 0.01 [-0.17, 0.18] 0.08 0.939

Beauty 2

Code
rez_reality$p_beauty

Code
rez_reality$t_beauty
Reality
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Reality Difference 95% CI t(10404) p
Human Forgery Human Original 0.00 0.00 [-0.02, 0.03] 0.29 0.770
AI-Generated Human Original 0.00 0.00 [-0.03, 0.02] -0.33 0.742
AI-Generated Human Forgery 0.00 -0.01 [-0.03, 0.02] -0.64 0.525
Human Forgery Human Original 0.25 0.01 [ 0.00, 0.02] 1.57 0.116
AI-Generated Human Original 0.25 0.00 [-0.01, 0.01] 0.35 0.723
AI-Generated Human Forgery 0.25 -0.01 [-0.02, 0.00] -1.25 0.212
Human Forgery Human Original 0.50 0.01 [-0.01, 0.02] 0.94 0.349
AI-Generated Human Original 0.50 0.00 [-0.02, 0.01] -0.07 0.947
AI-Generated Human Forgery 0.50 -0.01 [-0.02, 0.01] -1.01 0.311
Human Forgery Human Original 0.75 -0.01 [-0.02, 0.01] -1.06 0.287
AI-Generated Human Original 0.75 -0.01 [-0.02, 0.00] -2.03 0.042
AI-Generated Human Forgery 0.75 -0.01 [-0.02, 0.01] -0.97 0.332
Human Forgery Human Original 1.00 -0.03 [-0.05, -0.01] -2.72 0.007
AI-Generated Human Original 1.00 -0.03 [-0.05, -0.01] -2.92 0.003
AI-Generated Human Forgery 1.00 0.00 [-0.03, 0.02] -0.25 0.799
Code
rez_reality$t_beauty2
Reality
Predicting Follow-up Beauty (Slopes)
Condition Reality Slope 95% CI t(10404) p
Human Original 0.00 -0.08 [-0.17, 0.02] -1.63 0.104
Human Original 0.25 0.02 [-0.03, 0.07] 0.70 0.482
Human Original 0.50 0.11 [ 0.09, 0.13] 10.80 < .001
Human Original 0.75 0.20 [ 0.16, 0.25] 8.31 < .001
Human Original 1.00 0.30 [ 0.21, 0.39] 6.46 < .001
Human Forgery 0.00 -0.03 [-0.12, 0.06] -0.60 0.551
Human Forgery 0.25 0.02 [-0.02, 0.07] 0.98 0.325
Human Forgery 0.50 0.08 [ 0.06, 0.10] 7.53 < .001
Human Forgery 0.75 0.13 [ 0.08, 0.18] 5.20 < .001
Human Forgery 1.00 0.18 [ 0.09, 0.27] 3.90 < .001
AI-Generated 0.00 -0.03 [-0.12, 0.05] -0.75 0.452
AI-Generated 0.25 0.02 [-0.02, 0.07] 1.03 0.303
AI-Generated 0.50 0.08 [ 0.06, 0.10] 8.06 < .001
AI-Generated 0.75 0.14 [ 0.09, 0.19] 5.60 < .001
AI-Generated 1.00 0.20 [ 0.11, 0.29] 4.30 < .001

Authenticity

Code
rez_authenticity <- make_analysis(filter(dftask, !is.na(Authenticity)), outcome="Authenticity")
rez_authenticity$p_desc

Condition

Code
rez_authenticity$p_condition

Code
rez_authenticity$t_condition
Authenticity
Marginal Contrasts
Level1 Level2 Difference 95% CI t(14325) p
Human Forgery Human Original -0.02 [-0.03, -0.01] -3.41 < .001
AI-Generated Human Original -0.02 [-0.03, -0.01] -3.25 0.001
AI-Generated Human Forgery 0.00 [-0.01, 0.01] 0.16 0.874

Style

Code
rez_authenticity$p_style

Code
rez_authenticity$t_style
Authenticity
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(14325) p
Human Forgery Human Original Abstract and Avant-garde -0.01 [-0.03, 0.01] -0.89 0.372
AI-Generated Human Original Abstract and Avant-garde 0.00 [-0.02, 0.03] 0.30 0.766
AI-Generated Human Forgery Abstract and Avant-garde 0.01 [-0.01, 0.04] 1.19 0.234
AI-Generated Human Original Classical -0.04 [-0.06, -0.01] -3.00 0.003
Human Forgery Human Original Classical -0.02 [-0.04, 0.01] -1.52 0.128
AI-Generated Human Forgery Classical -0.02 [-0.04, 0.01] -1.48 0.140
Human Forgery Human Original Impressionist and Expressionist -0.03 [-0.05, -0.01] -2.46 0.014
AI-Generated Human Original Impressionist and Expressionist -0.01 [-0.03, 0.02] -0.65 0.516
AI-Generated Human Forgery Impressionist and Expressionist 0.02 [ 0.00, 0.04] 1.81 0.071
AI-Generated Human Original Romantic and Realism -0.04 [-0.06, -0.01] -3.15 0.002
Human Forgery Human Original Romantic and Realism -0.02 [-0.05, 0.00] -1.95 0.052
AI-Generated Human Forgery Romantic and Realism -0.01 [-0.04, 0.01] -1.21 0.228

Emotion

Code
rez_authenticity$p_emotion

Code
rez_authenticity$t_emotion
Authenticity
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(14337) p
Human Forgery Human Original Negative - High intensity -0.02 [-0.05, 0.00] -1.94 0.052
AI-Generated Human Original Negative - High intensity -0.01 [-0.03, 0.02] -0.49 0.623
AI-Generated Human Forgery Negative - High intensity 0.02 [-0.01, 0.04] 1.44 0.150
AI-Generated Human Original Negative - Low intensity -0.02 [-0.04, 0.00] -1.66 0.097
AI-Generated Human Forgery Negative - Low intensity -0.02 [-0.04, 0.01] -1.31 0.190
Human Forgery Human Original Negative - Low intensity 0.00 [-0.03, 0.02] -0.33 0.739
Human Forgery Human Original Positive - High intensity -0.04 [-0.06, -0.01] -3.15 0.002
AI-Generated Human Original Positive - High intensity -0.03 [-0.05, 0.00] -2.17 0.030
AI-Generated Human Forgery Positive - High intensity 0.01 [-0.01, 0.03] 0.92 0.356
AI-Generated Human Original Positive - Low intensity -0.02 [-0.05, 0.00] -2.07 0.038
Human Forgery Human Original Positive - Low intensity -0.02 [-0.04, 0.01] -1.34 0.179
AI-Generated Human Forgery Positive - Low intensity -0.01 [-0.03, 0.01] -0.73 0.464

Complexity and Familiarity

Code
rez_authenticity$p_complexity

Manipulation Belief

Code
rez_authenticity$p_trust

Code
rez_authenticity$t_trust
Authenticity
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(14325) p
AI-Generated Human Original -5 -0.05 [-0.08, -0.01] -2.53 0.012
Human Forgery Human Original -5 -0.03 [-0.07, 0.01] -1.55 0.120
AI-Generated Human Forgery -5 -0.02 [-0.06, 0.02] -0.98 0.328
AI-Generated Human Original 0 -0.02 [-0.03, -0.01] -3.45 < .001
Human Forgery Human Original 0 -0.02 [-0.03, -0.01] -3.45 < .001
AI-Generated Human Forgery 0 0.00 [-0.01, 0.01] 0.00 0.996
Human Forgery Human Original 5 -0.01 [-0.05, 0.02] -0.68 0.499
AI-Generated Human Original 5 0.01 [-0.03, 0.04] 0.39 0.694
AI-Generated Human Forgery 5 0.02 [-0.02, 0.05] 1.07 0.284

Self-Relevance

Code
rez_authenticity$p_selfrelevance

Code
rez_authenticity$t_selfrelevance
Authenticity
Self-Relevance (Marginal Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10404) p
AI-Generated Human Original 0.00 -0.03 [-0.06, -0.01] -3.19 0.001
Human Forgery Human Original 0.00 -0.03 [-0.05, -0.01] -2.69 0.007
AI-Generated Human Forgery 0.00 -0.01 [-0.03, 0.02] -0.48 0.630
Human Forgery Human Original 0.28 -0.02 [-0.04, 0.00] -1.64 0.102
AI-Generated Human Original 0.28 0.00 [-0.02, 0.02] 0.21 0.834
AI-Generated Human Forgery 0.28 0.02 [ 0.00, 0.04] 1.84 0.065
Human Forgery Human Original 0.50 -0.01 [-0.04, 0.01] -1.28 0.200
AI-Generated Human Original 0.50 0.00 [-0.02, 0.03] 0.38 0.702
AI-Generated Human Forgery 0.50 0.02 [ 0.00, 0.04] 1.67 0.095
AI-Generated Human Original 1.00 -0.08 [-0.14, -0.01] -2.42 0.016
AI-Generated Human Forgery 1.00 -0.04 [-0.11, 0.02] -1.34 0.180
Human Forgery Human Original 1.00 -0.03 [-0.10, 0.03] -1.00 0.317
Code
rez_authenticity$t_selfrelevance2
Authenticity
Self-Relevance (Marginal Slopes)
Condition SelfRelevance Slope 95% CI t(10404) p
Human Original 0.00 -0.06 [-0.17, 0.05] -1.11 0.267
Human Original 0.25 0.03 [-0.02, 0.08] 1.06 0.290
Human Original 0.50 0.12 [ 0.07, 0.16] 4.97 < .001
Human Original 0.75 0.21 [ 0.10, 0.31] 3.98 < .001
Human Original 1.00 0.30 [ 0.13, 0.46] 3.52 < .001
Human Forgery 0.00 0.00 [-0.11, 0.11] 0.03 0.980
Human Forgery 0.25 0.06 [ 0.01, 0.11] 2.23 0.026
Human Forgery 0.50 0.11 [ 0.06, 0.16] 4.48 < .001
Human Forgery 0.75 0.17 [ 0.06, 0.28] 3.10 0.002
Human Forgery 1.00 0.23 [ 0.05, 0.40] 2.57 0.010
AI-Generated 0.00 0.14 [ 0.03, 0.24] 2.48 0.013
AI-Generated 0.25 0.10 [ 0.05, 0.16] 4.08 < .001
AI-Generated 0.50 0.07 [ 0.03, 0.12] 3.04 0.002
AI-Generated 0.75 0.04 [-0.06, 0.15] 0.81 0.420
AI-Generated 1.00 0.01 [-0.16, 0.18] 0.13 0.894

Beauty 2

Code
rez_authenticity$p_beauty

Code
rez_authenticity$t_beauty
Authenticity
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 Authenticity Difference 95% CI t(10404) p
Human Forgery Human Original 0.00 0.00 [-0.03, 0.03] 0.17 0.865
AI-Generated Human Original 0.00 0.01 [-0.02, 0.04] 0.62 0.538
AI-Generated Human Forgery 0.00 0.01 [-0.02, 0.03] 0.46 0.646
Human Forgery Human Original 0.25 0.01 [-0.01, 0.02] 0.95 0.341
AI-Generated Human Original 0.25 0.00 [-0.01, 0.02] 0.25 0.805
AI-Generated Human Forgery 0.25 0.00 [-0.02, 0.01] -0.71 0.475
Human Forgery Human Original 0.50 0.00 [-0.01, 0.02] 0.61 0.542
AI-Generated Human Original 0.50 -0.01 [-0.02, 0.01] -1.03 0.303
AI-Generated Human Forgery 0.50 -0.01 [-0.03, 0.00] -1.65 0.100
Human Forgery Human Original 0.75 0.00 [-0.02, 0.01] -0.78 0.435
AI-Generated Human Original 0.75 -0.02 [-0.03, -0.01] -3.15 0.002
AI-Generated Human Forgery 0.75 -0.01 [-0.02, 0.00] -2.36 0.018
Human Forgery Human Original 1.00 -0.02 [-0.04, 0.00] -1.87 0.062
AI-Generated Human Original 1.00 -0.03 [-0.05, -0.01] -2.89 0.004
AI-Generated Human Forgery 1.00 -0.01 [-0.03, 0.01] -0.99 0.321
Code
rez_authenticity$t_beauty2
Authenticity
Predicting Follow-up Beauty (Slopes)
Condition Authenticity Slope 95% CI t(10404) p
Human Original 0.00 -0.15 [-0.25, -0.05] -3.07 0.002
Human Original 0.25 -0.05 [-0.10, 0.01] -1.66 0.096
Human Original 0.50 0.06 [ 0.04, 0.08] 5.28 < .001
Human Original 0.75 0.17 [ 0.12, 0.21] 7.17 < .001
Human Original 1.00 0.27 [ 0.18, 0.36] 6.10 < .001
Human Forgery 0.00 -0.12 [-0.22, -0.03] -2.50 0.012
Human Forgery 0.25 -0.04 [-0.09, 0.01] -1.57 0.117
Human Forgery 0.50 0.04 [ 0.02, 0.06] 3.42 < .001
Human Forgery 0.75 0.12 [ 0.07, 0.16] 4.92 < .001
Human Forgery 1.00 0.20 [ 0.11, 0.29] 4.33 < .001
AI-Generated 0.00 -0.18 [-0.27, -0.08] -3.67 < .001
AI-Generated 0.25 -0.08 [-0.13, -0.03] -2.92 0.003
AI-Generated 0.50 0.02 [ 0.00, 0.04] 1.84 0.066
AI-Generated 0.75 0.12 [ 0.07, 0.16] 5.05 < .001
AI-Generated 1.00 0.22 [ 0.13, 0.30] 4.86 < .001

Self-Relevance

Code
rez_selfrelevance <- make_analysis(filter(dftask, !is.na(SelfRelevance)), outcome="SelfRelevance")
rez_selfrelevance$p_desc

Condition

Code
rez_selfrelevance$p_condition

Code
rez_selfrelevance$t_condition
SelfRelevance
Marginal Contrasts
Level1 Level2 Difference 95% CI t(10533) p
AI-Generated Human Original 0.00 [-0.01, 0.00] -0.96 0.339
Human Forgery Human Original 0.00 [-0.01, 0.01] -0.66 0.509
AI-Generated Human Forgery 0.00 [-0.01, 0.01] -0.30 0.768

Style

Code
rez_selfrelevance$p_style

Code
rez_selfrelevance$t_style
SelfRelevance
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(10533) p
Human Forgery Human Original Abstract and Avant-garde -0.01 [-0.03, 0.01] -0.55 0.581
AI-Generated Human Original Abstract and Avant-garde 0.00 [-0.02, 0.02] 0.11 0.914
AI-Generated Human Forgery Abstract and Avant-garde 0.01 [-0.01, 0.03] 0.66 0.508
Human Forgery Human Original Classical -0.02 [-0.04, 0.00] -1.71 0.088
AI-Generated Human Original Classical -0.01 [-0.03, 0.01] -1.40 0.160
AI-Generated Human Forgery Classical 0.00 [-0.02, 0.02] 0.30 0.761
AI-Generated Human Forgery Impressionist and Expressionist -0.02 [-0.04, 0.00] -1.61 0.107
AI-Generated Human Original Impressionist and Expressionist -0.01 [-0.03, 0.01] -0.70 0.486
Human Forgery Human Original Impressionist and Expressionist 0.01 [-0.01, 0.03] 0.91 0.362
Human Forgery Human Original Romantic and Realism 0.00 [-0.02, 0.02] 0.02 0.982
AI-Generated Human Forgery Romantic and Realism 0.00 [-0.02, 0.02] 0.06 0.955
AI-Generated Human Original Romantic and Realism 0.00 [-0.02, 0.02] 0.08 0.937

Emotion

Code
rez_selfrelevance$p_emotion
Ignoring unknown labels:
• alpha : "Emotion"

Code
rez_selfrelevance$t_emotion
SelfRelevance
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(10545) p
AI-Generated Human Forgery Negative - High intensity 0.00 [-0.02, 0.02] -0.04 0.965
AI-Generated Human Original Negative - High intensity 0.01 [-0.01, 0.03] 0.59 0.558
Human Forgery Human Original Negative - High intensity 0.01 [-0.01, 0.03] 0.64 0.523
AI-Generated Human Original Negative - Low intensity -0.01 [-0.03, 0.01] -1.40 0.161
AI-Generated Human Forgery Negative - Low intensity -0.01 [-0.03, 0.01] -1.34 0.181
Human Forgery Human Original Negative - Low intensity 0.00 [-0.02, 0.02] -0.07 0.947
Human Forgery Human Original Positive - High intensity -0.02 [-0.04, 0.00] -1.90 0.058
AI-Generated Human Original Positive - High intensity -0.02 [-0.04, 0.00] -1.83 0.068
AI-Generated Human Forgery Positive - High intensity 0.00 [-0.02, 0.02] 0.06 0.948
Human Forgery Human Original Positive - Low intensity 0.00 [-0.02, 0.02] -0.01 0.995
AI-Generated Human Original Positive - Low intensity 0.01 [-0.01, 0.03] 0.78 0.437
AI-Generated Human Forgery Positive - Low intensity 0.01 [-0.01, 0.03] 0.79 0.430

Complexity and Familiarity

Code
rez_selfrelevance$p_complexity

Manipulation Belief

Code
rez_selfrelevance$p_trust

Code
rez_selfrelevance$t_trust
SelfRelevance
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(10533) p
Human Forgery Human Original -5 -0.04 [-0.07, -0.01] -2.52 0.012
AI-Generated Human Original -5 -0.01 [-0.04, 0.02] -0.38 0.701
AI-Generated Human Forgery -5 0.03 [ 0.00, 0.06] 2.13 0.033
AI-Generated Human Original 0 0.00 [-0.01, 0.00] -0.96 0.337
Human Forgery Human Original 0 0.00 [-0.01, 0.01] -0.89 0.375
AI-Generated Human Forgery 0 0.00 [-0.01, 0.01] -0.07 0.943
AI-Generated Human Forgery 5 -0.03 [-0.06, -0.01] -2.31 0.021
AI-Generated Human Original 5 0.00 [-0.03, 0.03] -0.24 0.810
Human Forgery Human Original 5 0.03 [ 0.00, 0.06] 2.07 0.038

Beauty 2

Code
rez_selfrelevance$p_beauty

Code
rez_selfrelevance$t_beauty
SelfRelevance
Predicting Follow-up Beauty (Contrasts)
Level1 Level2 SelfRelevance Difference 95% CI t(10548) p
Human Forgery Human Original 0.00 -0.01 [-0.02, 0.01] -0.98 0.328
AI-Generated Human Original 0.00 -0.01 [-0.02, 0.00] -1.86 0.062
AI-Generated Human Forgery 0.00 -0.01 [-0.02, 0.01] -0.88 0.378
Human Forgery Human Original 0.25 0.00 [-0.01, 0.01] -0.01 0.989
AI-Generated Human Original 0.25 -0.01 [-0.02, 0.00] -1.84 0.065
AI-Generated Human Forgery 0.25 -0.01 [-0.02, 0.00] -1.83 0.067
Human Forgery Human Original 0.50 0.00 [-0.01, 0.01] 0.16 0.874
AI-Generated Human Original 0.50 -0.01 [-0.02, 0.00] -1.57 0.117
AI-Generated Human Forgery 0.50 -0.01 [-0.02, 0.00] -1.74 0.081
Human Forgery Human Original 0.75 0.00 [-0.02, 0.01] -0.35 0.727
AI-Generated Human Original 0.75 -0.01 [-0.03, 0.00] -1.37 0.171
AI-Generated Human Forgery 0.75 -0.01 [-0.02, 0.01] -0.98 0.326
Human Forgery Human Original 1.00 -0.01 [-0.05, 0.03] -0.61 0.544
AI-Generated Human Original 1.00 -0.01 [-0.05, 0.02] -0.64 0.519
AI-Generated Human Forgery 1.00 0.00 [-0.04, 0.04] -0.02 0.981
Code
rez_selfrelevance$t_beauty2
SelfRelevance
Predicting Follow-up Beauty (Slopes)
Condition SelfRelevance Slope 95% CI t(10548) p
Human Original 0.00 0.55 [0.48, 0.61] 16.86 < .001
Human Original 0.25 0.48 [0.45, 0.51] 30.86 < .001
Human Original 0.50 0.41 [0.38, 0.43] 29.35 < .001
Human Original 0.75 0.34 [0.28, 0.40] 11.23 < .001
Human Original 1.00 0.27 [0.17, 0.37] 5.51 < .001
Human Forgery 0.00 0.58 [0.52, 0.64] 17.95 < .001
Human Forgery 0.25 0.49 [0.46, 0.52] 32.26 < .001
Human Forgery 0.50 0.40 [0.37, 0.43] 27.29 < .001
Human Forgery 0.75 0.31 [0.25, 0.38] 9.89 < .001
Human Forgery 1.00 0.22 [0.13, 0.32] 4.42 < .001
AI-Generated 0.00 0.55 [0.49, 0.61] 17.10 < .001
AI-Generated 0.25 0.48 [0.45, 0.51] 31.14 < .001
AI-Generated 0.50 0.41 [0.38, 0.43] 29.35 < .001
AI-Generated 0.75 0.34 [0.28, 0.39] 11.09 < .001
AI-Generated 1.00 0.26 [0.17, 0.36] 5.31 < .001

Beauty 2

Code
rez_beauty2 <- make_analysis(filter(dftask, !is.na(Beauty2)), outcome="Beauty2")
rez_beauty2$p_desc

Condition

Code
rez_beauty2$p_condition

Code
rez_beauty2$t_condition
Beauty2
Marginal Contrasts
Level1 Level2 Difference 95% CI t(10533) p
AI-Generated Human Original -0.01 [-0.02, 0.00] -2.86 0.004
AI-Generated Human Forgery -0.01 [-0.02, 0.00] -2.03 0.042
Human Forgery Human Original 0.00 [-0.01, 0.01] -0.83 0.409

Style

Code
rez_beauty2$p_style

Code
rez_beauty2$t_style
Beauty2
Marginal Contrasts by Style
Level1 Level2 Style Difference 95% CI t(10533) p
AI-Generated Human Original Abstract and Avant-garde -0.02 [-0.03, 0.00] -1.68 0.093
Human Forgery Human Original Abstract and Avant-garde -0.01 [-0.03, 0.01] -1.26 0.208
AI-Generated Human Forgery Abstract and Avant-garde 0.00 [-0.02, 0.01] -0.43 0.670
Human Forgery Human Original Classical -0.02 [-0.04, 0.00] -2.35 0.019
AI-Generated Human Original Classical -0.01 [-0.03, 0.00] -1.51 0.131
AI-Generated Human Forgery Classical 0.01 [-0.01, 0.03] 0.84 0.399
AI-Generated Human Forgery Impressionist and Expressionist -0.02 [-0.04, -0.01] -2.58 0.010
AI-Generated Human Original Impressionist and Expressionist -0.02 [-0.04, 0.00] -2.19 0.028
Human Forgery Human Original Impressionist and Expressionist 0.00 [-0.01, 0.02] 0.39 0.694
AI-Generated Human Forgery Romantic and Realism -0.02 [-0.03, 0.00] -1.90 0.058
AI-Generated Human Original Romantic and Realism 0.00 [-0.02, 0.01] -0.33 0.741
Human Forgery Human Original Romantic and Realism 0.01 [ 0.00, 0.03] 1.57 0.117

Emotion

Code
rez_beauty2$p_emotion

Code
rez_beauty2$t_emotion
Beauty2
Marginal Contrasts by Emotion
Level1 Level2 Emotion Difference 95% CI t(10545) p
AI-Generated Human Forgery Negative - High intensity -0.01 [-0.03, 0.01] -1.33 0.184
AI-Generated Human Original Negative - High intensity -0.01 [-0.02, 0.01] -0.68 0.495
Human Forgery Human Original Negative - High intensity 0.01 [-0.01, 0.02] 0.65 0.517
AI-Generated Human Original Negative - Low intensity -0.01 [-0.03, 0.00] -1.45 0.146
AI-Generated Human Forgery Negative - Low intensity -0.01 [-0.03, 0.00] -1.45 0.148
Human Forgery Human Original Negative - Low intensity 0.00 [-0.02, 0.02] -0.01 0.994
AI-Generated Human Original Positive - High intensity -0.03 [-0.05, -0.01] -3.26 0.001
Human Forgery Human Original Positive - High intensity -0.03 [-0.04, -0.01] -2.86 0.004
AI-Generated Human Forgery Positive - High intensity 0.00 [-0.02, 0.01] -0.40 0.689
AI-Generated Human Forgery Positive - Low intensity -0.01 [-0.03, 0.01] -0.82 0.415
AI-Generated Human Original Positive - Low intensity 0.00 [-0.02, 0.02] -0.24 0.807
Human Forgery Human Original Positive - Low intensity 0.01 [-0.01, 0.02] 0.57 0.569

Complexity and Familiarity

Code
rez_beauty2$p_complexity

Manipulation Belief

Code
rez_beauty2$p_trust

Code
rez_beauty2$t_trust
Beauty2
Manipulation Distrust
Level1 Level2 ManipulationDistrust Difference 95% CI t(10533) p
AI-Generated Human Original -5 -0.02 [-0.05, 0.01] -1.48 0.139
Human Forgery Human Original -5 -0.01 [-0.04, 0.02] -0.83 0.405
AI-Generated Human Forgery -5 -0.01 [-0.04, 0.02] -0.65 0.519
AI-Generated Human Original 0 -0.01 [-0.02, 0.00] -2.90 0.004
AI-Generated Human Forgery 0 -0.01 [-0.02, 0.00] -2.02 0.043
Human Forgery Human Original 0 0.00 [-0.01, 0.00] -0.88 0.379
AI-Generated Human Forgery 5 -0.01 [-0.04, 0.02] -0.68 0.497
AI-Generated Human Original 5 -0.01 [-0.03, 0.02] -0.39 0.696
Human Forgery Human Original 5 0.00 [-0.02, 0.03] 0.29 0.772

Figures

Code
fig_stimselection