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Introduction

The Bayesian framework for statistics is quickly gaining in popularity among scientists, for
reasons such as reliability and accuracy (particularly in noisy data and small samples), the
possibility of incorporating prior knowledge into the analysis, and the intuitive interpretation
of results (Andrews & Baguley, 2013; Etz & Vandekerckhove, 2016; Kruschke, 2010; Kruschke,
Aguinis, & Joo, 2012; Wagenmakers et al., 2017). Adopting the Bayesian framework is more
of a shift in the paradigm than a change in the methodology; all the common statistical
procedures (t-tests, correlations, ANOVAs, regressions, etc.) can also be achieved within the
Bayesian framework. One of the core difference is that in the frequentist view, the effects
are fixed (but unknown) and data are random. On the other hand, instead of having single
estimates of the “true effect”, the Bayesian inference process computes the probability of
different effects given the observed data, resulting in a distribution of possible values for
the parameters, called the posterior distribution. The bayestestR package provides tools to
describe these posterior distributions.
Effects in the Bayesian framework can be described by characterizing their posterior distri-
bution. Commonly reported indices include measures of centrality (e.g., the median, mean
or MAP estimate) and uncertainty (the credible interval - CI). With caution, these can be
considered the counterparts to the coefficient point-estimates and confidence intervals of the
frequentist framework. Additionally, bayestestR also focuses on implementing a Bayesian
null-hypothesis testing framework (in a Bayesian sense, i.e., extended to general testing of
“effect existence”) by providing access to both established and exploratory indices of effect
existence and significance (such as the ROPE, Kruschke & Liddell, 2018; the MAP-based
p-value, Mills, 2018; the Bayes factor, Morey & Rouder, 2011, or the Probability of Direction
- pd).
Existing R packages allow users to easily fit a large variety of models and extract and visualize
the posterior draws. However, most of these packages only return a limited set of indices (e.g.,
point-estimates and CIs). bayestestR provides a comprehensive and consistent set of func-
tions to analyze and describe posterior distributions generated by a variety of models objects,
including popular modeling packages such as rstanarm (Goodrich, Gabry, Ali, & Brilleman,
2018), brms (Bürkner, 2017), BayesFactor (Morey & Rouder, 2018), and emmeans (Lenth,
2019), thus making it a useful tool supporting the usage and development of Bayesian statis-
tics. The main functions are described below, and full documentation is available on the
package’s website.
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Examples of Features

The following demonstration of functions is accompanied by figures to illustrate the concep-
tional ideas behind the related indices. However, bayestestR functions also include plotting
capabilities via the see package (Lüdecke, Waggoner, Ben-Shachar, & Makowski, 2019).

Indices of Centrality: Point-estimates

bayestestR offers two functions to compute point-estimates from posterior distributions: ma
p_estimate() and point_estimate(), the latter providing options to calculate the mean,
median or MAP estimate of a posterior distribution (see Figure 1). map_estimate() is a
convenient function to calculate the Maximum A Posteriori (MAP) estimate directly.
The posterior mean minimizes expected squared error, whereas the posterior median mini-
mizes expected absolute error (i.e., the difference of estimates from true values over samples).
The MAP estimate corresponds to the most probable value of a posterior distribution.

set.seed(1)
posterior <- rchisq(100, 3)
map_estimate(posterior)

#> MAP = 1.46

point_estimate(posterior)

#> Median = 2.31

point_estimate(posterior, centrality = "mean")

#> Mean = 2.96

point_estimate(posterior, centrality = "map")

#> MAP = 1.46

Quantifying Uncertainty: The Credible Interval (CI)

In order to measure the uncertainty associated with the estimation, bayestestR provides
two functions: eti(), the Equal-Tailed Interval (ETI), and hdi(), the Highest Density
Interval (HDI). Both indices (accessible via the method argument in the ci() function) can
be used in the context of Bayesian posterior characterisation as Credible Interval (CI).
hdi() computes the HDI of a posterior distribution, i.e., the interval that contains all points
within the interval having a higher probability density than points outside the interval (see
Figure 2). HDIs have a particular property: Unlike an equal-tailed interval (computed by
eti()) that typically excludes 2.5% from each tail of the distribution, the HDI is not equal-
tailed and therefore always includes the mode(s) of posterior distributions.
By default, hdi() and eti() return the 89% intervals (ci = 0.89), deemed to be more stable
than, for instance, 95% intervals. An effective sample size of at least 10.000 is recommended if
95% intervals should be computed (Kruschke, 2015). Moreover, 89 indicates the arbitrariness
of interval limits - its only remarkable property is being the highest prime number that does
not exceed the already unstable 95% threshold (McElreath, 2018).
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Figure 1: Indices of centrality of the posterior distribution that are often used as point-estimates:
the mean (in green), median (in red), and MAP estimate (in blue)

hdi(posterior)

#> # Highest Density Interval
#>
#> 89% HDI
#> [0.11, 6.05]

eti(posterior)

#> # Equal-Tailed Interval
#>
#> 89% ETI
#> [0.42, 7.27]

Null-Hypothesis Significance Testing (NHST)

The Bayesian framework allows one to neatly delineate and quantify different aspects of
hypothesis testing, including effect existence and significance, and different indices have been
developed to describe them.

ROPE and Test for Practical Equivalence

rope() computes the proportion of the HDI (default to the 89% HDI) of a posterior distri-
bution that lies within a Region Of Practical Equivalence (the ROPE; see Figure 3, panel
A).
Statistically, the probability of a posterior distribution being different than 0 does not make
much sense (the probability of it being different from a single point being infinite). Therefore,
the idea underlining ROPE is to let the user define an area around the null value enclosing
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Figure 2: Indices of uncertainty that can be used as Credible Intervals (CIs): (A) the 89% Highest
Density Interval (HDI); (B) the 89% Equal-Tailed Interval (ETI).

values that are equivalent to the null value for practical purposes (Kruschke, 2018; Kruschke
& Liddell, 2018). In the absence of user-provided values, bayestestR will automatically find
an appropriate range for the ROPE using the rope_range() function.

rope(distribution_normal(1000, mean = 1), range = c(-0.5, 0.5))

#> # Proportion of samples inside the ROPE [-0.50, 0.50]:
#>
#> inside ROPE
#> 27.16 %

The proportion of HDI lying within this “null” region can be used as an decision criterion
for “null-hypothesis” testing. Such a Test for Practical Equivalence, implemented via
equivalence_test(), is based on the “HDI+ROPE decision rule” (Kruschke, 2018) to check
whether parameter values should be accepted or rejected against an explicitly formulated “null
hypothesis” (i.e., a ROPE). If the HDI is completely outside the ROPE, the “null hypothesis”
for this parameter is “rejected”. If the ROPE completely covers the HDI, i.e., all most credible
values of a parameter are inside the ROPE, the null hypothesis is accepted. Otherwise, whether
to accept or reject the null hypothesis is undecided.

library(rstanarm)
model <- stan_glm(mpg ~ wt + gear, data = mtcars)
equivalence_test(model)

#> # Test for Practical Equivalence
#>
#> ROPE: [-0.60 0.60]
#>
#> Parameter H0 inside ROPE 89% HDI
#> (Intercept) Rejected 0.00 % [30.82 47.02]
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Figure 3: Posterior distributions (in yellow) of effects (the x-axis) with the illustration of indices of
Null-Hypothesis Significance Testing: (A) The ROPE; (B) The Probability of Direction - pd; (C) The
Savage-Dickey Bayes factor; (D) The MAP-based p-value.

#> wt Rejected 0.00 % [-6.63 -4.39]
#> gear Undecided 52.54 % [-1.76 1.23]

Probability of Direction (pd)

p_direction() computes the Probability of Direction (pd, also known as the Maximum
Probability of Effect - MPE). This index of effect existence varies between 50% and 100% and
can be interpreted as the probability that a parameter (described by its posterior distribution)
is strictly positive or negative (whichever is the most probable). It is mathematically defined
as the proportion of the posterior distribution that is of the median’s sign (see Figure 3, panel
B).

p_direction(distribution_normal(100, 0.4, 0.2))

#> # Probability of Direction (pd)
#>
#> pd = 98.00%

Bayes Factor

bayesfactor_parameters() computes Bayes factors against the null (either a point or
an interval), based on prior and posterior samples of a single parameter. This Bayes factor
indicates the degree by which the mass of the posterior distribution has shifted further away
from or closer to the null value(s) (relative to the prior distribution), thus indicating if the
null value has become less or more likely given the observed data.
When the null is an interval, the Bayes factor is computed by comparing the prior and posterior
odds of the parameter falling within or outside the null; when the null is a point, a Savage-
Dickey density ratio is computed, which is also an approximation of a Bayes factor comparing
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the marginal likelihoods of the model against a model in which the tested parameter has been
restricted to the point null (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010).

prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = 1, sd = 0.7)

bayesfactor_parameters(posterior, prior, direction = "two-sided", null = 0)

#> # Bayes Factor (Savage-Dickey density ratio)
#>
#> Bayes Factor
#> 1.98
#>
#> * Evidence Against The Null: [0]

MAP-based p-value

p_map() computes the odds that a parameter (described by its posterior distribution) has
against the null hypothesis (h0) using Mills’ Objective Bayesian Hypothesis Testing framework
(Mills, 2018; Mills & Parent, 2014). It corresponds to the density value at 0 divided by the
density at the MAP - the Maximum A Posteriori (see Figure 3, panel D).

p_map(distribution_normal(1000, mean = 1))
#> # MAP-based p-value
#>
#> p (MAP) = 0.629

Visualisation and Compatibility with Models

Most of bayestestR functions can be visualised (see Figure 4) by passing them to the plot()
function (the see package needs to be installed). Moreover, these functions can be directly
applied to statistical models (fitted for instance with rstanarm or brms), resulting in the
description of the parameters of the model.

# Load the rstanarm and the see package
library(rstanarm)
library(see)

# Fit a Bayesian linear regression
model <- stan_glm(Petal.Width ~ Petal.Length * Sepal.Width, data = iris)

# Store results
result_pd <- p_direction(model)

# Print and plot results
print(result_pd)

# Probability of Direction (pd)

Parameter pd
(Intercept) 72.47%

Petal.Length 99.88%
Sepal.Width 70.97%
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Figure 4: Visualisation of the pd for the parameters of a Bayesian regression model.

Petal.Length:Sepal.Width 96.70%

plot(result_pd)

Licensing and Availability

bayestestR is licensed under the GNU General Public License (v3.0), with all source code
stored at GitHub (https://github.com/easystats/bayestestR), and with a corresponding issue
tracker for bug reporting and feature enhancements. In the spirit of honest and open science,
we encourage requests/tips for fixes, feature updates, as well as general questions and concerns
via direct interaction with contributors and developers.
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