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1 |  INTRODUCTION

There is compelling evidence that the continuous dynamic 
brain representation of internal bodily signals sets the foun-
dations for a sense of self as the basis for phenomenal states 
(Craig, 2009; Park, Correia, Ducorps, & Tallon‐Baudry, 
2014; Park & Tallon‐Baudry, 2014). The body‐brain inter-
action plays a causal role in driving spontaneous large‐scale 
cortical activity (Park et al., 2014) that is known to shape 
the neural response (Greicius & Menon, 2004; He, 2013) 
and the subjective conscious experience (Boly et al., 2007; 
Sadaghiani, Hesselmann, & Kleinschmidt, 2009; Vinnik, 
Itskov, & Balaban, 2012) of physical stimuli. One prominent 
channel of brain and body communication is that conveyed by 
baroreceptors (i.e., the pressure and stretch‐sensitive recep-
tors within the heart and surrounding arteries) that inform the 

brain of the dynamic state of the heart and impact ascending 
neuromodulator systems involved in motivational behavior 
(Garfinkel & Critchley, 2016). Arterial baroreceptors have, 
for their part, a phasic activity associated with the pulse pres-
sure wave of the cardiac phase. They fire maximally when 
the blood is ejected from the heart, i.e., after cardiac systole 
and minimally between heart beats, i.e., during cardiac dias-
tole (Gray, Rylander, Harrison, Wallin, & Critchley, 2009).  
The activity of the baroreceptors has been shown to modulate 
the perception of bodily states, such as nociception (Edwards, 
Ring, McIntyre, & Carroll, 2001; Martins, Ring, McIntyre, 
Edwards, & Martin, 2009) or emotional arousal (Garfinkel 
et al., 2014; Gray et al., 2012).

However, the cardiac phase seems to also impact higher‐
level cognitive functions, such as stereotypes expression. 
Indeed, Azevedo, Garfinkel, Critchley, and Tsakiris (2017) 
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Abstract
Bodily states are heavily intertwined with cognitive processes. A prominent com-
munication channel between bodily signals and brain structures is provided by 
baroreceptors. Their phasic activity associated with the cardiac phase has been shown 
to modulate cognitive control in socio‐emotional contexts. However, whether this ef-
fect is specific to the affective dimension or impacts general cognitive control pro-
cesses remains controversial. The aim of the present study is to investigate the effect 
of cardiac phase on different facets of cognitive control. We built a nonemotional 
cognitive control task to delineate mechanisms such as processing speed, response 
selection, response inhibition, and conflict monitoring. We showed that the systole 
(after the blood is ejected from the heart), compared to the diastole, was related to 
faster responses. Moreover, the cardiac phase dynamics also impacted response in-
hibition, with an increased probability of failure toward the middle of the course of 
systole. Although the reported effects were small in terms of magnitude, they high-
light the influence of bodily states on abstract cognitive processes.
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recently reported changes related to afferent cardiac activity 
in the appraisal of complex social stimuli (pictures of people) 
and associated behavioral consequences, such as racial bias. 
In particular, they found that, during systole as compared 
to diastole, participants better identified weapons primed 
by black faces and tools primed by white faces. In a second 
experiment employing a first‐person shooter task (FPST; 
Correll, Park, Judd, & Wittenbrink, 2002), the authors 
showed that the likelihood of errors (i.e., of “shooting”) un-
armed Black targets compared to White targets was increased 
during systole. They suggest that, in the context of alertness 
to threat‐signaling stimuli, increased brain representation of 
cardiac activity enhances the salience of social cues and pro-
motes the expression of negative racial stereotypes. Arterial 
baroreceptors signals reach, through cranial nerves X and XI, 
the nucleus of the solitary tract, which has proximate connec-
tions with the thalamus and the amygdala, a region possibly 
involved in mechanisms underpinning the observed exagger-
ation of racial biases (Adolphs, 2010; Anderson & Phelps, 
2001; Olsson & Phelps, 2007). Indeed, this center was shown 
to be involved in the baroreceptor effect influencing the pro-
cessing of salient stimuli (Gray et al., 2009). Thus, Azevedo, 
Garfinkel, et al. (2017) suggested that their findings on the 
expression of racial stereotypes could be explained by the 
amygdala response, whose activity would be modulated by 
the properties of cardiac signals.

However, a second nonexclusive hypothesis is invoked 
by the authors, related to the inhibitory effect of cardiovas-
cular baroreceptor firing on the dorsolateral prefrontal cor-
tex (Pramme, Schaechinger, & Frings, 2015). The phasic 
deactivation of these regions could hinder the ability to in-
hibit the prepotent response. This would, in turn, increase 
the expression of racial stereotypes by decreasing control 
over undesirable automatic responses. However, the authors 
judge this explanation less likely to explain their pattern of 
results. Indeed, using a performance dissociation procedure 
(Ferreira, Garcia‐Marques, Sherman, & Sherman, 2006), 
they showed that the cardiac phase impacted preferably au-
tomatic processes and threat‐related stimuli rather than con-
trolled processes and nonthreat‐related stimuli (in their case, 
positive Black athletic stereotypes). Nevertheless, the FPST 
task can be seen as an “ecological,” contextually rooted ver-
sion of the go/no‐go task, in which a participant must inhibit 
their response according to a specific condition. The investi-
gation of the cardiac phase effect on a nonemotional version 
of the task could bring answers on the role of interoceptive 
signals on high‐level cognition and its behavioral conse-
quences. It is interesting to note that inhibition is related with 
heart rate activity. For example, Jennings, der Molen, Brock, 
and Somsen (1992) showed that successful action inhibition 
delays the heart rate recovery acceleration. Moreover, they 
further showed that the cardiac deceleration related to pre-
paratory inhibition was correlated with the activity of the 

subthalamic nuclei (Jennings, Van Der Molen, & Tanase, 
2009), a major component of a significant inhibitory network 
(Aron, 2008; van den Wildenberg et al., 2006). However, al-
though suggesting an intertwined and complex relationship 
between inhibition and cardiac activity, these two studies did 
not examine the effect of cardiac phase per se.

The relationship between heart activity and general cog-
nitive processes caught the interest of physiologists early 
on. Unfortunately, the effect of the cardiac phase on re-
action times yielded very conflicting results (Carroll & 
Anastasiades, 1978), resulting in the absence of a simple and 
straightforward story. Nevertheless, discrepancies in the pro-
cedure, operationalization, and cardiac index choice or cal-
culation render comparison of these studies difficult. These 
inconsistent data suggest that the effect of the cardiac phase, 
if existing, is tiny and very sensitive to context (Thompson & 
Botwinick, 1970). Nonetheless, it also supports the necessity 
of a precise description as well as technical and statistical 
control of the parameters at stake. Lacey and Lacey (2017) 
suggested that one such important piece of information to 
take into account could be the point within the cardiac cycle 
at which a stimulus is presented, suggesting a complex in-
teraction between cardiac phase dynamics and cognitive 
processing.

Cognitive control can be defined as the ability to coordi-
nate thoughts or actions in relation to internal goals (Koechlin, 
Ody, & Kouneiher, 2003). The aim of the present study was 
to investigate the effect of cardiac phase on different fac-
ets of cognitive control, especially conflict monitoring and 
response inhibition, as these two aspects were shown to be 
supported by different neural pathways (MacDonald, Cohen, 
Stenger, & Carter, 2000; Siemann, Herrmann, & Galashan, 
2016; Simmonds, Pekar, & Mostofsky, 2008; Van Veen & 
Carter, 2005): conflict monitoring performance was related 
to activity in the anterior cingulate cortex (Botvinick, Cohen, 
& Carter, 2004; Van Veen & Carter, 2002), while response 
inhibition would be supported by networks such as dorso-
lateral and inferior frontal areas or inferior parietal circuit 
(Aron, Robbins, & Poldrack, 2014; Criaud & Boulinguez, 
2013; Simmonds et al., 2008) With this aim, we built a cog-
nitive control task based on the gradual addition of control 
processes, easing their further delineation, and investigated 
the effect of the cardiac phase.

Based on previous results and neuroanatomical data, we 
expected stimuli presented during systole to yield quicker 
reaction times (due to a preactivation of salience process-
ing related areas) and more frequent response inhibition 
failures (due to deactivation of dorsolateral prefrontal 
areas), compared to diastole. Curiously, a recent study re-
ported the opposite pattern using a stop signal task (Rae et 
al., 2018). The authors suggest that the quicker detection of 
salient stimuli at systole would also lead to the better pri-
oritization of adaptive behavior, whether aversive reaction 
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(explaining why fearful faces are perceived as more intense 
during systole; Garfinkel et al., 2014) or response inhi-
bition. Replication and generalization to other cognitive 
control mechanisms might be a way to confront this gen-
eral “all‐time adaptive systole” hypothesis with the “gut 
reaction” (fast but with less control) hypothesis. Critically 
taking into account the cardiac phase dynamics might cast 
a new light on these data.

2 |  METHODS

2.1 | Participants
The study presented in this article is based on two distinct 
samples (henceforth referred to as Sample 1 and Sample 2). 
For Sample 1, 35 healthy participants were recruited using 
Internet advertisement. Inclusion criteria were age between 
18 and 29, right‐hand laterality, native French language, 
and absence of neurological or psychiatric disorders. They 
were asked to provide informed and written consent and 
were given 25€ for their participation. One participant was 
excluded because of technical problems in physiological re-
cording. The final Sample 1 was composed of 34 participants 
(age: 24.13 ± 2.63, 76.47% female, years of higher education: 
3 ± 1.86). For Sample 2, 40 university students were initially 
recruited with similar inclusion criteria and compensated by 
academic credits. Seven participants were excluded due to 
technical issues in the setup of the triggers. The final sample 
was composed of 33 participants (age: 20.18 ± 2.49, 87.88% 
female, years of education: 1  ±  1.63). The overall sample 
size included 67 participants (age: 22.18  ±  3.23, 82.09%  
female, years of education: 2 ± 2.01). The study was approved  
by the local ethics committee.

2.2 | Procedure
Experimental sessions started at 1:30 p.m. in a sound‐attenu-
ated, dimly lit room. The task discussed in the present article 
took place in a broader protocol including questionnaires and 
neuropsychological tests. Tasks not relevant for the current 
study will not be discussed.

2.2.1 | Procedure
The cognitive control test (CoCon) was developed to assess, 
in a relatively short time (8.56  ±  0.48  min with setup and 
instructions), several processes related to cognitive control: 
simple reaction time, choice reaction time, inhibition, and 
conflict resolution. In order to isolate and delineate them, the 
task was composed of four distinct parts. The number and 
characteristics of the stimuli present in each part is described 
in Table 1. In all parts, the stimuli appeared on a neutral gray 
screen (128, 128, 128 in RGB mode) and lasted until the 

participant responded, followed by a randomly jittered inter‐
trial interval (ITI), uniformly ranging from 33 (i.e., one frame 
on a 60 Hz monitor) to 2,000 ms. Stimuli consisted of a local 
shape (a triangle) displayed on a global shape (a circle or tri-
angle, depending on the conflict condition). Shapes could be 
of four colors (yellow, blue, orange, white) and pointing in 
four directions (left, right, top, bottom). Examples of stimuli 
are presented in Figure 1. The task, programmed on Python 
3.6 with the Neuropsydia module (Makowski & Dutriaux, 
2017), is freely available in open access at <https ://github.
com/Domin iqueM akows ki/CoCon.py>.

The experiment was divided in four parts. In Part 1, par-
ticipants were instructed to press (with the index of their 
dominant hand), as quickly as they can, one key (the down 
arrow), as soon as a stimulus appeared on screen. Part 2 
added the response selection condition: participants had to 
indicate the direction of the local triangle by pressing the 
corresponding keyboard arrows (left, down, right) with their 
index, middle, or ring finger, respectively. When the local tri-
angle was pointing to the top, they were instructed not to re-
spond. The no‐response trials are designed to test the correct 
noninitiation of response related to response unavailability. 
Part 3 added the contextual no‐go condition: when the global 
(i.e., the background) circle was white, participants were 
instructed not to respond. Finally, Part 4 added the conflict 
condition, inspired by the flanker task (Eriksen & Eriksen, 
1974; Van't Ent, 2002). The trials were either congruent—the 
global (background) triangle pointing in the same direction 
as the local (small) triangle—or incongruent—with the back-
ground triangle pointing in the opposite direction of the trian-
gle indicating the required response. Trials ended if no button 
was pressed after 2,000 ms. The number of trials for Sample 
1 (see Table 1) was selected after a pretest by looking at the 
point of stabilization of the cumulative average (the number 
of trials beyond that additional trials do not critically impact 
the average). For Sample 2, we doubled the number of trials. 
To minimize the contamination of our data by the reversed 
relationship, that is, the cardiac reactivity to cognitive con-
trol (Jennings et al., 1992) or error processing (Łukowska, 
Sznajder, & Wierzchoń, 2018), we started by removing trials 
with ITI < 300 ms (~15%). Outlying RTs (±2 SD) were re-
moved separately for each part (5.58%, 5.41%, and 4.59% in 
Parts 1, 2, and 4, respectively). Error rates in the four parts 
were, respectively, 0.04%, 4.30%, 9.47%, and 3.59%, and the 
ratio of no‐response trials in Parts 2, 3, and 4 was 9%, 11%, 
and 11%, respectively.

2.2.2 | Measures
Simple reaction time, choice reaction time, and conflict 
resolution were operationalized as the duration between the 
stimulus appearance and the response in Parts 1, 2, and 4, 
respectively. Response inhibition was operationalized as the 

https://github.com/DominiqueMakowski/CoCon.py
https://github.com/DominiqueMakowski/CoCon.py
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errors in the no‐go trials in Part 3. Errors in the no‐go tri-
als in Part 4 were used to observe the effect of conflict on 
inhibition.

2.2.3 | Electrocardiogram
Cardiac activity (electrocardiogram [ECG]) was recorded 
using BioPac MP150 system (BioPac Systems Inc., USA) 
and the AcqKnowledge Software 4.3 with a sampling fre-
quency of 1,000  Hz. To maximize the QRS signal, ECG 
electrodes were placed according to a modified Lead II con-
figuration (Takuma et al., 1995) on the right and left subcla-
vicular spaces (the deltopectoral fossae) and on the left lower 
rib. About 5  min of activity were recorded before starting 
the experiment to allow participants to adapt to the recording 
equipment. Event timings were recorded with BioPac along-
side the bodily signals by a photosensor attached to a corner 
of the screen, on top of a small rectangle that turned to black 
whenever the stimulus actually appeared on the screen.

Using Python and the NeuroKit package (Makowski, 
2017), the ECG signal was FIR band‐pass filtered (3–45 Hz, 

3rd order), and the QRS complexes were segmented using 
Hamilton's (2002) method. As previous literature showed 
that cardiac phase timings were highly dependent on the 
heart rate (Boudoulas, Geleris, Lewis, & Rittgers, 1981; 
Chung, Karamanoglu, & Kovács, 2004; Husmann et al., 
2007) and thus different across participants and trials, we 
defined the cardiac phase based on physiological features 
rather than on R peak distance‐based heuristics. After seg-
mentation of the cardiac complex, we designated the inter-
val between the R peak and the end of the following T wave 
as the systole, and the remaining interval as the diastole. 
Finally, we extracted the ongoing cardiac phase at each 
stimulus display as well as the time point in the cycle cor-
responding to the percentage of current phase completion.

2.3 | Data analysis
We performed the analysis under the Bayesian framework 
(which demonstrated better reliability in noisy data and bet-
ter estimation for small samples; Andrews & Baguley, 2013; 
Etz & Vandekerckhove, 2016; Kruschke, 2010; Kruschke, 

T A B L E  1  CoCon stimuli list

Part n stimuli Global shape Global color Local shape Local color Response

1 30 Circle Blue, orange, yellow, 
white

Triangle (left, right, top, 
bottom)

Blue, orange, yellow, 
white

Down

2 30 Circle Blue, orange, yellow, 
white

Triangle (left, right, bottom) Blue, orange, yellow, 
white

Left, right, down

3 Circle Blue, orange, yellow, 
white

Triangle (top) Blue, orange, yellow, 
white

None

3 40 Circle Blue, orange, yellow Triangle (left, right, bottom) Blue, orange, yellow Left, right, down

3 Circle Blue, orange, yellow Triangle (top) Blue, orange, yellow None

6 Circle White Triangle (left, right, bottom) Blue, orange, yellow None

3 Circle White Triangle (top) Blue, orange, yellow None

4 40 Triangle 
(incongruent)

Blue, orange, yellow Triangle (left, right, bottom) Blue, orange, yellow Left, right, down

3 Triangle 
(incongruent)

Blue, orange, yellow Triangle (top) Blue, orange, yellow None

6 Triangle 
(incongruent)

White Triangle (left, right, bottom) Blue, orange, yellow None

3 Triangle 
(incongruent)

White Triangle (top) Blue, orange, yellow None

40 Triangle 
(congruent)

Blue, orange, yellow Triangle (left, right, bottom) Blue, orange, yellow Left, right, down

3 Triangle 
(congruent)

Blue, orange, yellow Triangle (top) Blue, orange, yellow None

6 Triangle 
(congruent)

White Triangle (left, right, bottom) Blue, orange, yellow None

3 Triangle 
(congruent)

White Triangle (top) Blue, orange, yellow None

Note: Number and characteristics of the stimuli present in the four parts for Sample 1. For Sample 2, the number of each trial by conditions was double.
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Aguinis, & Joo, 2012; Wagenmakers et al., 2018) in con-
junction with mixed models, able to handle unbalanced data, 
nested designs, crossed random effects, and missing data 
(Kristensen & Hansen, 2004). The analysis relied on linear 
models to predict response times in Parts 1, 2, and 4 (together 

and separately) and logistic models to predict inhibition  
errors in Part 3. We started by fitting the simplest model 
(with the cardiac phase [systole/diastole] as the only predic-
tor). In a second step, we added the percentage of cardiac 
phase completion (with its 2nd order polynomial degree to 
evaluate a nonlinear relationship) as predictor to account for 
the underlying dynamics of the cardiac phase. Moreover, this 
could potentially mitigate for the fact that time immediately 
after the R wave, although labeled as systole, precedes baro-
receptors stimulation, which is the primary mechanism sup-
porting the effect of the cardiac phase. Finally, in a third step, 
we added the ITI, also with its 2nd order polynomial degree, 
to test its interaction with the effect of cardiac phase.

In each model, we entered participants and stimuli features 
(color and orientation of the local triangle) as random factors 
to account for interindividual and item‐related variability. We 
also added the sample (Sample 1, Sample 2), to account for 
differences between these two pools of participants. Priors 
were set as noninformative (normally centered around zero). 
Instead of a point estimate of each effect associated with a p 
value, we will report characteristics of the posterior distribu-
tion (the probabilities of different effects given the observed 
data), such as the median (comparable to the beta of frequen-
tist regressions), 90% credible interval, and the probability of 
direction (pd; an index of effect existence corresponding to 
the probability that the effect is in the median's direction, i.e., 
positive or negative). We will consider effects as relevant if 
their pd (an index strongly correlated with the frequentist p 
value) is superior to 95% (Makowski, Ben‐Shachar, Chen, & 
Lüdecke, 2019; Makowski, Ben‐Shachar, & Lüdecke, 2019).

Statistics were performed using R 3.5 (R Development 
Core Team, 2008), the rstanarm package (Gabry & 
Goodrich, 2016), and the easystats (Lüdecke, Waggoner, & 
Makowski, 2019; Makowski, 2018) suite. For each model, 
we will describe only the noteworthy effects, the full anal-
ysis script and results description being available in online 
supporting information. Note that orthogonal polynomial 
coefficients have a meaningless value scale: their interpre-
tation is best obtained from a graphic representation (pre-
sented in Figure 2).

3 |  RESULTS

The proportion and average duration of systole and diastole 
trials were, respectively, 38% (300.84 ± 58.39 ms) and 62% 
(491.45 ± 90.75 ms).

3.1 | Reaction time—General
We selected all trials without conflict or inhibition. Note that 
a model comparing the two participant samples suggested 
that Sample 2 possibly had overall slower reaction times  

F I G U R E  1  Task procedure. Examples of stimuli presented 
in each part and the associated correct response. Part 1 requires 
pressing the down arrow at presentation of any stimuli. Part 2 requires 
selecting between three answers depending on the stimulus (with one 
“unavailable response” stimulus type). Part 3 requires inhibiting the 
response when the background circle was white. Part 4 adds flanker 
style perceptual conflict
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(the fact that the RT difference between Sample 2 and Sample 
1 has a probability of 94.99% of being positive, with a  
median of 24.12, 90% CI [0.09, 46.92]), provides argument 
for adjusting the following models for the sample).

The simple model (R2 median  =  .25; intercept me-
dian = 451.70) suggested that the difference of RT between 

diastole and systole (diastolic RT − systolic RT) had a 
probability of 98.50% of being positive (median  =  5.77, 
90% CI [1.46, 10.27]). The second model, including the 
cardiac phase completion (R2 median = .25; intercept me-
dian = 452.61), showed no evidence for its interaction with 
the effect of diastole. The third model (R2 median =  .25; 

F I G U R E  2  The effect of cardiac phase (systole in red, diastole in blue) for different facets of cognitive control: (a) simple reaction time in 
Part 1, (b) response selection in Part 2, (c) probability of response inhibition failure in Part 3, and (d) conflict resolution. For response inhibition 
(Part 3), the percentage of cardiac phase completion (x axis) shows that the probability of response inhibition failure is maximal during the middle 
of systole. Error bars represent the 90% credible interval of the estimated means in each condition and not the error related to the difference 
between diastole and systole. It shows the large variability in the RTs compared to the size of the difference between systole and diastole (with 
diastole related to slower RTs than systole), which seems to exist, in particular for simple reaction times (a). Bottom‐right panel shows a canonical 
representation of the QRS complex (upper part) to illustrate the location of the cardiac phases as well as example of the stimuli and the required 
response (bottom part) corresponding to the four parts of the task
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intercept median = 453.12), by adding the ITI to the sim-
ple model, revealed a negative linear relationship between 
ITI and RT (median  =  −9.25, 90% CI [−14.32, −4.31], 
pd  =  99.85%) and a possible interaction with the effect 
of the diastole: the higher the ITI, the smaller the ef-
fect of diastole (median  =  −4.54, 90% CI [−9.31, 0.27], 
pd = 94.38%).

3.2 | Reaction time—Simple
In Part 1, after data exclusion, the average number of 
analyzed trials by participant after data exclusion was 
23.38  ±  2.95 and 47.39  ±  4.94 in Sample 1 and 2, re-
spectively. The simple model (R2 median = .50; intercept 
median = 312.70) suggested that the difference of RT be-
tween diastole and systole had a probability of 95.40% of 
being positive (median = 4.25, 90% CI [0.12, 8.39]). The 
second model, including the cardiac phase completion (R2 
median = .25; intercept median = 317.22), showed no ev-
idence for its interaction with the effect of diastole. The 
third model (R2 median = .51; intercept median = 315.89), 
by adding the ITI to the simple model, revealed a negative 
linear relationship between ITI and RT (median = −14.29, 
90% CI [−18.95, −9.40], pd = 100%), but no interaction 
with the effect of the diastole.

3.3 | Response selection
In Part 2, after data exclusion, the average number of analyzed 
trials by participant after data exclusion was 21.62 ± 4.18 and 
44.88  ±  7.30 in Sample 1 and 2, respectively. The simple 
model (R2 median  =  .34; intercept median  =  515.48) sug-
gested no consistent difference of RT between diastole and 
systole (median = 5.30, 90% CI [−0.84, 11.80], pd = 91.28%). 
The second model, including the cardiac phase completion 
(R2 median =  .34; intercept median = 519.54), showed no 
evidence for its interaction with the effect of diastole. The 
third model (R2 median = .34; intercept median = 519.18), 
by adding the ITI to the simple model, revealed a negative 
linear relationship between ITI and RT (median  =  −9.72, 
90% CI [−16.7, −3.01], pd = 98.98%) but no interaction with 
the effect of the diastole.

3.4 | Conflict resolution
In Part 4, after data exclusion, the average number of analyzed 
trials by participant after data exclusion was 59.26 ± 12.06 and 
121.58 ± 17.22 in Sample 1 and 2, respectively. The models 
predicting RTs (for go trials only) included the conflict con-
dition (congruent, incongruent) as additional predictor. The 
simple model (R2 median = .34; intercept median = 582.73) 
suggested, for congruent trials, the difference of RT between 
diastole and systole a probability of 94.88% of being positive 

(median  =  6.28, 90% CI [0.02, 12.96]). Incongruent trials 
(with perceptual conflict) were related to a slower RT with a 
probability of 100% (median = 47.11, 90% CI [39.25, 53.70]). 
Moreover, there was an interaction between incongruence 
and the effect of diastole, the latter being decreased in incon-
gruent trials with a probability of 94.56% (median = −9.48, 
90% CI [−18.11, 0.44]). The second model, including the 
cardiac phase completion (R2 median  =  .34; intercept me-
dian = 581.66), showed no evidence for its interaction with 
the effect of diastole. The third model (R2 median = .34; inter-
cept median = 583.03), by adding the ITI to the simple model, 
revealed no consistent relationship between ITI and RT and 
no interaction with the effect of the diastole.

3.5 | Response inhibition
In Part 3, after data exclusion, the average number of analyzed 
trials by participant after data exclusion was 14.59 ± 1.88 and 
28.85  ±  2.85 in Sample 1 and 2, respectively. The simple 
model (R2 median = .06; intercept median = −2.69) predict-
ing inhibition errors suggested no consistent difference of er-
rors between diastole and systole (median = −0.08, 90% CI 
[−0.57, 0.42], pd = 61.65%). However, adding the cardiac 
phase completion in the model (R2 median = .07; intercept 
median = −4.17) suggested a significant quadratic relation-
ship (inverse U shape) between the probability of error and the 
cardiac phase completion only during systole (1st order poly-
nomial: median = 0.07, 90% CI [0.02, 0.13], pd = 99.08%; 
2nd order polynomial: median = −0.001, 90% CI [−0.002, 
−0.001], pd = 99.05%). Finally, adding the ITI to the previ-
ous model (R2 median = .11; intercept median = −3.92) re-
vealed no effect of ITI nor interaction with the cardiac phase 
effect or its completion state.

4 |  DISCUSSION

We investigated the effect of the cardiac phase upon pres-
entation of a stimulus in four conditions involving simple to 
complex aspects of cognitive control. We built a cognitive 
control task to measure processes such as simple reaction 
time, response selection, response inhibition, and conflict 
monitoring and, through the incremental structure of the task, 
to allow their delineation. We reported that reaction times 
were consistently faster during systole compared to diastole. 
The magnitude of this effect being, nevertheless, very small 
(less than 10 ms), this effect was stronger when other pro-
cesses were not involved (such as response selection and con-
flict monitoring). Moreover, the time course of systole was 
related to a modulation of the probability of response inhibi-
tion failure that was higher at the middle of its time course.

Simple reaction time, a measure of processing speed (and 
a general index of “fluid” intelligence; Jakobsen, Sorensen, 
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Rask, Jensen, & Kondrup, 2011; Sheppard & Vernon, 2008; 
Woods, Wyma, Yund, Herron, & Reed, 2015), can be con-
sidered as part of cognitive control (Koechlin et al., 2003). 
This result could be related to findings reporting a facili-
tated processing of visual stimuli during systole (Pramme, 
Larra, Schächinger, & Frings, 2016), such as low‐frequency 
fearful faces (Azevedo, Badoud, & Tsakiris, 2017). Taken 
together, these results tend to be coherent with the underly-
ing neuroanatomical pathways of baroreceptor signal central 
integration. In particular, the priming of the amygdala and 
the associated saliency network during systole might, in our 
case, ease the stimulus processing and accelerate the action 
command, resulting in quicker reaction times. Interestingly, 
while previous research investigating the impact of cardiac 
phase on low‐level processes reports results in line with our 
findings (Stewart, France, & Suhr, 2006), other studies did 
not report any influence of the cardiac phase on RT (Birren, 
1965; Edwards, Ring, McIntyre, Carroll, & Martin, 2007; 
Rae et al., 2018; Thompson & Botwinick, 1970). Moreover, 
McIntyre, Ring, Hamer, and Carroll (2007) found an op-
posite pattern (with slower RTs early in the cardiac phase), 
but the conjunction of postural changes (legs up/down) and 
preparation effect (the participants had to press a button on a 
preparation signal and release their finger as quickly as pos-
sible on another signal, always triggered within 5 s after the 
preparation signal) might be important keys to explain this 
pattern. Nevertheless, these inconsistencies suggest that the 
effect is rather small and easily overshadowed in the presence 
of other processes. Moreover, some of these studies reported 
simple RTs generally lower than ours with the use of differ-
ent protocols or response‐collecting devices. These discrep-
ancies could contribute to the inconsistencies in the findings 
reported by the literature, to which the present results might 
not be generalizable.

Interestingly, we reported a facilitating effect mainly on 
reaction times in the simplest condition (where the partici-
pant had to press the same key at the appearance of any stim-
uli). This effect was dampened when other processes, such as 
response selection or conflict monitoring, were at stake. This 
pattern change under cognitive load might explain findings 
showing an absence of cardiac phase effect on RT in deci-
sion‐making tasks (Jennings & Wood, 1977).

Critical to the currently investigated issue, the reported 
increase of no‐go errors during the middle of systole might 
be related to the phasic deactivation of dorsolateral prefron-
tal regions, known to be engaged in cognitive control tasks 
(Niendam et al., 2012; Simmonds et al., 2008). This suggests 
that the effect reported by Azevedo, Garfinkel, et al. (2017), 
that is, the increased likelihood of errors in a FPST during 
systole, might be linked to failures of inhibition rooted at an 
abstract level rather than being solely related to social ma-
terial. Interestingly, a recent study investigating a similar 
question did not report that result on response inhibition (Rae  

et al., 2018). The authors used the stop signal task, in which 
the inhibition is directed at the motor (or premotor) command 
(the stop signal appearing after the go signal). In our case 
(where the go and no‐go signal are concurrent), the inhibition 
might happen before or at action initiation. While this subtle 
difference might contribute to the discrepancies in results, it 
also underlines the need for further exploration.

5 |  LIMITATIONS AND FUTURE 
DIRECTIONS

Although revealing a coherent pattern of results suggesting 
that the systole phase is related to a faster and less controlled 
response, this study presents some substantive limitations. 
Importantly, the high variability of RTs in regard to the ef-
fects investigated led to a high uncertainty (large credible in-
tervals) in the parameter estimation. Although the selected 
and discussed effects have an acceptable probability (around 
95%) of existing (i.e., being different from zero), their ac-
tual size appears as very small, and their precise estimation 
is subject to caution. A second concern might be made based 
on the variability induced by a random ITI, leading to a vari-
able influence of previous trials upon the physiological reac-
tivity and cognitive processing of new trials. Although this 
randomness provides some amount of control (as the possible 
reminiscent effects should flat down) when the number of tri-
als is high, and that we did not report any interaction with the 
effect of cardiac phase, it remains a question that should be 
addressed by future studies. Importantly, discrepancies with 
studies investigating cognitive control (and inhibition) could 
also be related to the subprocesses at stake (for instance, the 
target and timing of response inhibition), underlining the 
complexity of the presently investigated issue.

In summary, this exploratory study shows that the car-
diac phase and its dynamics modulate our efficiency in non-
emotional (i.e., does not include affective stimuli) cognitive 
control tasks. We showed that cardiac systole, that is, upon 
activation of arterial baroreceptors, was related to shorter 
simple reaction times and modulated the probability of re-
sponse inhibition failures. These results advocate for the role 
of interoceptive pathways and brain‐body communication on 
higher‐order cognitive processes, such as cognitive control. 
Taken together, that data could be of importance for inter-
ventions with interoceptive processes as mechanism or target, 
such as biofeedback or mindfulness meditation (Farb, Segal, 
& Anderson, 2012; Lehrer & Gevirtz, 2014).
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