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Abstract: The use of heart rate variability (HRV) in research has been greatly popularized over the
past decades due to the ease and affordability of HRV collection, coupled with its clinical relevance
and significant relationships with psychophysiological constructs and psychopathological disorders.
Despite the wide use of electrocardiograms (ECG) in research and advancements in sensor technology,
the analytical approach and steps applied to obtain HRV measures can be seen as complex. Thus, this
poses a challenge to users who may not have the adequate background knowledge to obtain the HRV
indices reliably. To maximize the impact of HRV-related research and its reproducibility, parallel
advances in users’ understanding of the indices and the standardization of analysis pipelines in its
utility will be crucial. This paper addresses this gap and aims to provide an overview of the most
up-to-date and commonly used HRV indices, as well as common research areas in which these indices
have proven to be very useful, particularly in psychology. In addition, we also provide a step-by-step
guide on how to perform HRV analysis using an integrative neurophysiological toolkit, NeuroKit2.

Keywords: HRV; ECG; respiration; biosignals; psychophysiology; psychology; NeuroKit2

1. Heart Rate Variability for Psychologists: A Review of HRV Metrics and an
Analysis Tutorial

A complex and constantly changing heart rate (HR) is an indicator of healthy reg-
ulatory systems that can effectively adapt to sudden environmental and psychological
challenges [1–5]. Thus, reduced heart rate variability (HRV) has not only been associated
with poor cardiovascular health outcomes [6–8] and a range of vascular diseases [4,9,10],
but also with different mental disorders and cognitive impairments [8,11–17].

The physiological mechanism underlying HRV exemplifies the tight, yet complex
coupling between the brain and the body. Heartbeats are initiated by the impulse generated
from the sinoatrial (SA) node—a bundle of specialized cells in the heart. The SA node,
dictating the rhythm of heart contractions, is in turn controlled by the complex interactions
between different regulatory systems and mechanical activities such as respiration. As
the interdependent sources of HR operate on different time scales, HRV is itself unevenly
distributed in different frequency bands, with high and low frequency changes correspond-
ing to different neurophysiological mechanisms. Rapid changes of HR reflect the cardiac
regulatory influences of the autonomic nervous system (ANS), in tandem with its dynamic
interaction with cardiovascular and respiratory activities [10,18–20]. On the other hand,
slow HR changes reflect bodily fluctuations of lower frequency, such as circadian rhythms,
sleep cycles, metabolism, and changes in body temperature and hormonal systems.

The autonomic nervous system (ANS), which influences HR on short-time inter-
vals, is subdivided into two distinct components, namely the sympathetic (SNS) and the
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parasympathetic nervous system (PNS). The SNS, known as the “quick response” system,
predominates during elevated activity and stressful states and its stimulation results in
an increase in HR. The PNS, known as the “relaxed response” system, predominates in
the quiet and relaxing states, and is related to a decrease in HR. In healthy individuals,
the two systems work together (promptly alternating between each other) to maintain the
regulatory balance in physiological autonomic function.

In addition to the neural contributions of the two ANS systems, the short-term pe-
riodic changes of HR are also influenced by the cyclic activation of the baroreceptors—a
mechanical sensor that works to maintain a homeostatic level of blood pressure [21]. When
there is an increase in blood pressure, baroreceptors fire to decrease HR and increase the
diameter of blood vessels, which subsequently brings the blood pressure back to normal.
The opposite effect is observed when the blood pressure decreases. This ability of the body
to regulate blood pressure is referred to as baroreflex. The stronger the baroreflex, the more
frequently our HR is adjusted to maintain a stable level of blood pressure. Thus, a stronger
baroreflex is associated with greater HRV.

The baroreflex is also the autonomic reflex that underlies the physiologic interactions
between the cardiovascular and respiratory systems. Specifically, the arterial baroreceptors
are also affected by breathing (arterial pressure decreases during inhalation and increases
during exhalation), which results in variation in HR during each breathing cycle. This
specific influence of respiration on HRV is referred to as respiratory sinus arrhythmia (RSA).
RSA can be seen as one of the aspects of HRV and encapsulates the coupling between
respiratory and cardiac activity. It has been measured via the proxy of specific HRV indices
sensitive to the variability in the respiratory frequency band (e.g., in [22]). However, RSA-
specific metrics, which usually require the respiratory signal to quantify selectively the
variability related to breathing, provide a more accurate measure of RSA [23].

Due to the different time scales and frequencies at which different systems influence
HR, the duration of the cardiac activity recordings naturally limits the sources of variability
that can be quantified. While short recordings of 5 min or less can effectively capture
high-frequency HRV, long-term recordings of at least 24 h are needed to reliably assess
lower-frequency components [18,20]. As long-term recordings capture changes across
more diverse situations, they are more reflective of the general state of the system and have
been found to be more predictive of health outcomes [24–27]. However, due to practical
considerations, there is a strong interest regarding the reliability (and validity) of indices
computed from shorter recordings.

Recent evidence suggests that some HRV indices obtained with time windows as
short as 10–30 s are as reliable as short-term HRV indices obtained from more typical (i.e.,
5 min or more) recording lengths [28–33]. However, this only applies to some “types” of
HRV metrics, namely time-domain indices, rather than frequency-domain indices (which
require at least 1 min) [33,34] or non-linear indices. Other metrics, specifically targeting
long-term changes, can require as long as 24 h of recording to capture the mechanisms of
interest. We will discuss these different types of HRV indices in the following section.

2. HRV Indices

When HRV was first recognized as a potential indicator of ANS abnormalities [35], the
main method used to quantify it was to measure the amount of variance in inter-beat inter-
vals (IBI)—the time intervals between successive heartbeats. In 1981, Akselrod et al. [36]
introduced the power spectral analysis of HR to assess the power (or energy) found within
different frequency bands. As different regulatory systems influence HRV at different fre-
quencies, frequency-domain measures allow the assessment of their unique contributions
to changes of HR. A few years later, L. Cohen [37] introduced the time-frequency domain
measures to capture both the time and frequency variabilities simultaneously. In the same
decade, Goldberger and West [38] argued that the HR signal was not simply a product of a
regular periodic oscillator; instead, it displayed characteristics of a deterministic chaos—a
seemingly random sequence of events with an underlying structure [39,40]. Therefore,
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in order to capture the complex non-linear dynamic behaviors of the “chaotic” fluctua-
tions of HR, new analytical approaches based on entropy and fractal dimensions were
proposed [40–43]. Since then, the evolution of HRV research has been associated with the
emergence of new and supposedly better indices or approaches to quantify and reliably
assess HRV, making it a rapidly evolving field heavily connected to mathematical and
computational developments.

3. Time-Domain Analysis

Time-domain measures reflect the total variability of HR and are relatively indis-
criminate when it comes to precisely quantifying the respective contributions of different
underlying regulatory mechanisms [44]. However, this “general” sensitivity can be seen as
a positive feature (e.g., in exploratory studies or when specific underlying neurophysiolog-
ical mechanisms are not the focus). Moreover, as they are easy to compute and interpret,
time-domain measures are still among the most commonly reported HRV indices.

4. Deviation-Based Indices

SDNN, measured in the unit of milliseconds (ms), is the standard deviation of the
normal beat intervals (denoted NN intervals), i.e., excluding beats related to technical
artefacts and physiological artefacts (e.g., similar to ectopic beats—beats that do not arise
from SA node depolarizations—and atrial fibrillation). Mathematically, SDNN is the square
root of the total variance in the entire recording and, therefore, it encompasses both short-
term high frequency variation (mostly due to parasympathetically-mediated RSA [20])
and long-term low frequency components of the HR signals. Some proponents argue that
the accuracy of SDNN is higher for longer recording periods, especially over 24 h periods
where values of SDNN have been used for cardiac risk stratification in medical settings [20].

Stemming from the concept of SDNN, there are other statistical variables that similarly
capture the variance of NN but in a more fine-grained manner. Firstly, the standard
deviation of average NN is extracted for each 5 min segment of the long-term HR time
series (e.g., 24 h recordings) (SDANN). It is highly correlated with SDNN and has been said
to provide little additional information beyond what SDNN is able to [20]. On the other
hand, the SDNN index (SDNNI) is the mean of the standard deviations of NN calculated
per 5 min segment [20]. While SDANN is an estimate of long-term components contributing
to HRV, SDNNI assesses the variability within the short intervals and hence is an estimate
of short-term components that modulate HR signals.

While these traditional indices have been recommended by official guidelines [18]
and have been extensively used in past research, new metrics are being explored in parallel
with the development of the mathematics and statistics fields. Some of them involve certain
forms of normalization, such as the Coefficient of Variation of NN (CV), i.e., the ratio of the
standard deviation to the mean, which could be more stable when comparing individuals
or conditions with different HR baselines [45]. Others involve “robust” alternatives to
traditional dispersion indices, such as the Median Absolute Deviation (MAD; a median-
based index of variability) or the interquartile range (IQR), that are less influenced by
outliers and, thus, less sensitive to measurement errors [46,47].

5. Difference-Based Indices

While the aforementioned indices are calculated directly from the NN sequence,
other approaches are derived from the difference between successive NN intervals. These
measures include the standard deviation of the successive difference (SDSD), the root mean
square of successive difference (RMSSD), the proportion of successive NN intervals that
are larger than a given threshold (e.g., 20 ms or 50 ms—pNN20 and pNN50, respectively).
As these measures are derived from beat-to-beat differences, they are mostly indicative of
short-term variations in HR.

Among the highly correlated difference-based indices, RMSSD is generally preferred
by researchers due to its better statistical properties [18,48]. As compared to SDNN, RMSSD
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is more influenced by the PNS activity and hence is often used to estimate the vagally
mediated fluctuations in HR [19,48]). Its statistical robustness makes it well-suited for
short-term time windows [30,33,49].

6. Geometric Indices

HRV can also be quantified from geometric (i.e., graphical) representations of NN,
in the form of histograms and scatter plots. Such indices include, among others, the
HRV triangular index (HTI), the triangular interpolation of NN histogram (TTIN) and
other geometrical properties of the NN scatter plots (e.g., Lorenz plots). While geometric
methods are less sensitive to measurement errors as compared to basic dispersion-based
indices [50], a large number of NN intervals is required for reliable assessment. Therefore,
even though 5 min recordings have successfully been used in past research [51], recordings
of at least 20 min are recommended for accurate computation [18].

7. Frequency-Domain Analysis

As the different regulatory systems modulate HR at distinct frequencies, frequency-
domain indices that reflect the distribution of power across different frequencies bands
are particularly suited to assess the specific components of HRV. According to Force [18],
the HRV power spectrum can be meaningfully divided into four bands: ultra-low fre-
quency (ULF; ≤0.003 Hz), very low frequency (VLF; 0.0033–0.04 Hz), low frequency (LF;
0.04–0.15 Hz) and high frequency (HF; 0.15–0.4 Hz).

Generally, due to the inherent differences in their signaling mechanisms, the parasym-
pathetic (vagal) modulation of HR, including RSA, is faster than the sympathetic activities.
Thus, research suggests that HF and LF are prominent reflections of parasympathetic and
sympathetic activity, respectively [44,52]. The ratio of LF to HF power (LF/HF) has also
been commonly used as an index of the sympathovagal balance—a measure of the relative
contributions of SNS to PNS activity.

HF component is relatively established as an index of the parasympathetic modulation
of HR and under controlled conditions, its derivative, LnHF (the natural logarithm of HF) as
an estimator of vagal tone [20,44]. However, the concept of tagging a frequency component
to a particular division of ANS activities has been controversial for other components.
Particularly, the interpretation of LF power as an index of sympathetic activities has been
repeatedly challenged. In contrast to the assumption that LF power dominantly represents
the sympathetic component, research has shown that it is modulated by both ANS branches
as well as baroreceptor activities [18,44,53,54]. There are also mixed findings regarding
the exact physiological mechanisms underlying ULF and VLF components [20,27], with
the former often being associated with very low-frequency biological processes such as
circadian rhythms or metabolisms [55,56] and the latter with body temperature regulation
and vasomotor activity [57–59].

Another limitation of the frequency-domain approach is pertaining to the inherent
differences in the outputs of different spectral analysis algorithms, which make it difficult to
compare the absolute values of frequency components across studies [18,60]. For instance,
a non-parametric method such as the fast Fourier transform (FFT) periodogram has been
argued to overestimate the LF/HF as compared to the Lomb–Scargle (LS) periodogram [60].
Even with the same algorithm, the values of the frequency components can greatly vary
depending on the choices of the parameters such as the length of the estimation window or
the model order [61].

To allow for more reliable comparison of frequency components across studies, the
spectral indices are often normalized by dividing the individual component by the total
power. The normalization process allows the normalized components (normalized LF,
LFn and normalized HF, HFn) to be less varied by the methodological differences and less
sensitive to the changes in total power [18,62]. Depending on the length of the recording,
the normalizing denominator (total power) can be with or without the ULF component
(sum of power includes ULF, VLF, LF and HF for 24 recordings, and includes VLF, LF and
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HF for short-term recordings [20]). Even though the normalized spectral HRV indices can be
interpreted in the same manner as the absolute values, the general guideline recommends
reporting the low-frequency and high-frequency components in both absolute (e.g., LF,
HF) and normalized forms (e.g., LFn, HFn) to present a complete picture of the power
distribution [18].

8. Time-Frequency Methods of Analysis

The spectral analysis algorithms used in frequency-domain approaches can only com-
pute the power spectrum density (PSD) over the entire recording, failing to account for
the temporal variation of the frequency components. To address this limitation, tools to
simultaneously capture both time and frequency changes (i.e., a time-frequency approach,
TF), have been proposed [37,63]. By evaluating the frequency spectrum over short moving
windows, TF methods quantify the instantaneous PSD at any given time [19]. The TF
methods include, among others, linear approaches such as the short-time Fourier trans-
form (STFT), the wavelet transform, and quadratic approaches such as the Wigner–Ville
distribution (WVD).

As it allows for the integration over both the time and frequency domain, the TF HRV
indices usually include the maximum and minimum energy of the time windows in HR
signal, the standard deviation between energy of time windows, the total energy of signal
in different frequency bands (e.g., energy of VLF, LF or HF), and the corresponding average
energy of each band (derived by dividing total energy by length of band). While the TF ap-
proaches are believed to be more informative since they provide a means to quantitatively
assess the changes in frequency components across time, they are not as widely used as
other domains. One current limiting factor is that some of them are computationally expen-
sive, while others, being easier to compute, can hardly provide high accuracy in both time
and frequency domains [64,65]. The appeal of TF approaches could be greatly enhanced
by addressing these technical challenges, together with future works that investigate the
interpretations of relevant TF features extracted from the time-varying spectrum.

9. Non-Linear Dynamics

Recent research has emphasized non-linear interactions of physiological systems
underlying cardiovascular regulation [66]. Hence, HRV indices derived from non-linear
methods were proposed to adequately characterize the dynamical properties of HR that
other methods are unable to [18].

10. Poincaré Plot

The Poincaré plot, whose principles were derived from nonlinear dynamics theory,
is one of the most common methods to measure non-linear HRV [67]. It corresponds to a
scatterplot of each NN interval plotted against its corresponding preceding interval, which
approximates the cardiac system’s evolution [68]. The points are dispersed around the
identity line and converge into an ellipsoid configuration. Points above the line represent
HR decelerations (NN intervals that are longer than preceding ones) and points below the
line of identity indicate HR accelerations [69].

Qualitatively, the Poincaré plot’s shape provides a visual summary of the heart’s
behavior [67]. From the plot, outliers such as premature heartbeats and other technical
artefacts can be easily removed, something which cannot be done with spectral and
most time-domain analyses. On a quantitative level, indices extracted from the plot
correspond to time-domain indices. SD1 is the standard deviation of points perpendicular
to the identity line and is equivalent to RMSSD [48], describing short-term NN variability.
SD2 is the standard deviation of points parallel to the line of identity and is equivalent
to SDNN, representing long-term NN variability. The former reflects short-term vagal
activity whereas the latter represents sympathetic modulation. A third index, SD1/SD2,
describes the ratio of short to long-term variations in NN interval fluctuations and reflects
sympathovagal balance [70]. SD1/SD2 has been shown to additionally capture complexity



Sensors 2021, 21, 3998 6 of 20

in HR patterns (e.g., healthy heart displays a “comet” shaped Poincaré plot while cardiac
abnormalities display atypical “fan” or “complex” shapes [71–73]). However, SD1/SD2
seems to be sensitive to the time lag used, with some recent research recommending a lag
of five or six heartbeats [72,74]. Nevertheless, there is no consensus on the optimal time lag
yet, which itself could be subject to inter-individual differences.

11. Entropy

Entropy-based methods find their roots in information theory in which they are
conceptualized as measures of complexity (or “unpredictability”) of a signal. While they
originated from fields of thermodynamics [75], their applications have expanded towards
the quantification of complexity in physiological systems and have been used widely as
a diagnostic tool in biomedicine. The underlying concept of entropy is that it quantifies
repetitions of patterns in a signal, with greater entropy indicating higher randomness and
unpredictability (and thus, complexity) and lower entropy values implying that the cardiac
system is predictable, (i.e., periodic and does not produce much new information) [76].
Common entropy-based methods include approximate entropy (ApEn) [77], sample entropy
(SampEn) [78], and multiscale entropy (MSE) [79]. SampEn was built on ApEn [78] and
addresses the latter’s tendency to overestimate the amount of regularity in the signal [75,
80,81], being in turn more consistent in measuring complexity across different time series
lengths [67]. However, another important difference is that ApEn computes regularity based
on short time sequences whereas SampEn considers the entire time series [75]. Consequently,
ApEn might be better suited to capture short-term HRV changes than SampEn, which is
more often used as a global index of variability [76].

However, as higher irregularity is not always equivalent to higher complexity [82],
these traditional measures have been shown to falsely quantify random HRV changes in
certain pathological conditions as being complex [79,83]. In order to estimate complexity
from irregularity statistics more accurately, Costa et al. [83] suggested instead examining
irregularity in multiple spatio-temporal scales where SampEn is estimated on more than
one scale, giving rise to a new entropy-based method called MSE. Compared to single-scale
entropy estimates, MSE has been able to accurately account for lower HRV observed in
different cardiac abnormalities, such as atrial fibrillation where there are random outputs in
HRV [83]. As MSE formulation does not allow for reliable computation of entropy in short
time windows, new methods such as refined MSE (RMSE) [84] and refined composite MSE
(RCMSE) [85] have been introduced, though few studies have tested them on HRV [86,87].

The entropy analysis of HRV is an actively evolving field, with more novel approaches
being proposed, each claiming to confer certain advantages over more traditional ap-
proaches. For example, new measures such as fuzzy entropy (FuzzEn) [88] and fuzzy
measure entropy (FuzzyMEn) [89] that were developed to overcome the poor statistical
stability of ApEn and SampEn [90,91] have been gaining traction. While a comparison of
clinical validity across these entropy measures has been demonstrated in a few studies
(e.g., [89,92,93]), the choice of entropy type and the appropriate parameters for entropy cal-
culation is not a straightforward process and investigation into how these factors influence
HRV interpretations is still ongoing [94].

12. Fractal Measures

Fractal methods are more recently developed methods to assess noisy and nonsta-
tionary time series. In the context of HRV, fractal methods measure the fluctuations of
the cardiac system across multiple time scales, where lower self-similarity/self-affinity
(i.e., similar structural details at different scales of visualization) may imply a randomly
structured, less adaptable and flexible system.

Correlation dimension (CD) is a widely used measure of fractal dimension (an index
of how patterns change with the scale at which it is measured). In the case of HRV, CD
measures the number of dynamic variables needed to define the underlying system of the
HR time series, where a higher CD reflects greater complexity in HRV. Other algorithms
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for computing fractal dimension also exist, such as the box-counting dimension, and the
algorithm by Katz [95] and Higuchi [96], but CD is the most popular by far [67].

In recent years, the most extensively used method in measuring HRV complexity is
detrended fluctuation analysis (DFA) [97]. DFA is a measure of the correlations between
successive NN intervals at different time scales, and is used to analyze recordings spanning
several hours. Its computation disregards nonstationarities in the cardiac time series and
hence any spurious correlations due to artifacts of nonstationarity behavior (e.g., trends due
to external stimuli) are avoided, an advantage conferred over other fractal methods [98,99].
DFA eventually extracts both long-term correlations and short-term correlations, with
anywhere between 4 and 16 heartbeats for the former, and 16 and 64 heartbeats for the
latter [98]. The short-term correlations correspond to the baroreceptor reflex whereas the
long-term correlations measure regulatory mechanisms in the cardiac system [20]. See
Table 1 for a summary of all indices.

Table 1. A summary of HRV indices according to their respective analysis domains.

Analysis Domain Sub-Domain Acronym Description

Time-Domain

Deviation-based
approach

SDNN Standard deviation of NN intervals
SDANN Standard deviation of average NN intervals for each 5 min segment

SDNN Index Mean of the standard deviations of NN intervals in 5 min segments

Difference-based
approach

SDSD Standard deviation of successive NN interval differences
RMSSD Root mean square of successive NN interval differences
pNN20 Proportion of successive NN interval differences larger than 20 ms
pNN50 Proportion of successive NN interval differences larger than 50 ms

Geometric approach HTI Integral of the density of the NN interval histogram divided by its height
TTIN Baseline width of the RR interval histogram

Frequency-domain

Absolute Power

ULF Power spectrum in the frequency range of ≤0.003 Hz
VLF Power spectrum in the frequency range of 0.0033–0.04 Hz
LF Power spectrum in the frequency range of 0.04–0.15 Hz
HF Power spectrum in the frequency range of 0.15–0.4 Hz

Normalized/Relative
Power

LnHF Natural logarithm of HF
HFn Normalized HF
LFn Normalized LF

LF/HF Ratio of LF to HF power

Time-frequency domain

Linear approach STFT Power spectrum estimation using short-term Fourier transform
WT Power spectrum estimation using Wavelet transform

Quadratic approach WVD Power spectrum estimation using Wigner—Ville distribution
SWVD Power spectrum estimation using Smoothed Wigner–Ville distribution

Non-linear domain

Poincaré Plot
SD1 Poincaré plot standard deviation perpendicular the line of identity
SD2 Poincaré plot standard deviation along the line of identity

SD1/SD2 Ratio of SD1 to SD2

Entropy
ApEn Estimation of complexity using approximate entropy

SampEn Estimation of complexity using sample entropy
MSE Estimation of complexity using multiscale entropy

Fractal Dimensions
DFA Estimation of signal fluctuations using detrended fluctuation analysis
CD Estimation of minimum number of variables to define a dynamic model

13. Respiratory Sinus Arrhythmia (RSA)

RSA refers to the fluctuations of HR at the respiratory frequency, or in other words,
the effect of respiratory-gated PNS activity on the heart. As RSA commonly occurs at
high-frequency heart rate fluctuations, most studies quantify RSA using the HF component
of the spectral measures [100]. Other methods to quantify RSA include the Porges–Bohrer
method (PB) [101] and the peak-to-trough algorithm (P2T) [102,103]. PB extracts RSA by
removing variances in the HR time series that are not attributable to spontaneous breathing
frequencies, and has high accuracy only when there is a low signal-to-noise ratio in the data.
On the other hand, P2T derives RSA by finding the difference between the shortest heart
period during inhalation and the longest heart period during exhalation per single breath.
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Even though the three different RSA indices are highly correlated [102], PB has been
shown to be less susceptible to the non-stationarity in the HR signal and the influence of
respiration than the HF component or P2T metric [23]. While both HF and P2T may work
well in the absence of slow components and trends [23], PB has been proposed to be the
most sensitive to vagal activity.

14. HRV in Psychological Research

As mentioned above, the different HRV indices are believed to reflect different phys-
iological mechanisms. It is therefore unsurprising that they are associated with distinct
psychological constructs, such as cognitive abilities, neural processes, personality traits
and psychopathological disorders.

15. HRV and Self-Control

Based on the neurovisceral integration model [104,105], the neural circuitry impli-
cated in the effective regulation of psychological processes (i.e., emotional and cognitive
self-regulation) are also related to the regulation of cardiac autonomic activity. The model
has gained ample support over the past decades as mounting evidence emerges, showing
a significant relationship between HRV and prefrontal cortex activity [105–108]. This is in
line with studies investigating the relationship between HRV and executive functioning,
showing that participants with higher resting HRV (particularly short-term changes) per-
formed better at different executive tasks, such as sustained attention [109,110], working
memory [111,112] inhibition [106,113–115], and cognitive flexibility [16,116,117]. Addi-
tionally, Hansen et al. [111] also highlighted the executive-specific advantage of higher
vagally-mediated resting HRV which was not observed in non-executive tasks based on
simple reaction time.

Autonomic flexibility (i.e., the ability of ANS to modify bodily states), indexed by
HRV, is crucial for adjusting between high and low arousal states, and has thus been
related to emotional regulation. In studies that investigated emotional responses to stress,
individuals with higher resting RSA had lower perceived (negative) emotional arousal
and made greater use of adaptive coping strategies [118,119]. Similarly, individuals with
higher HF experience more positive moods, in particular cheerfulness and calmness, and
this relationship was mediated by emotion regulation abilities (e.g., ability to engage in
situational planning, refocusing, and reappraisal) [120]. This parallels findings reporting
that anxious participants experienced a greater decrease in RCMSE during stress expo-
sure [86]. This is in line with neuroimaging findings highlighting the relationship between
HRV and the activity of brain regions involved in threat perception and saliency detection
such as the amygdala, media prefrontal cortex [121]. Although the evidence in favor of a
link between cognitive and affective dysregulation and reduced HRV is robust, the exact
physiopsychological mechanisms underlying this association remain to be uncovered [122].

While most of the literature focuses on the role of resting HRV in cognitive control
and emotional regulation, another level of analysis of HRV, the phasic HRV, has been less
examined but is also of great interest for health and well-being. Resting or tonic HRV is
measured at the state of resting, whereas phasic HRV is measured during the state of stress
where changes in HRV, relative to baseline, represent the reactivity of the cardiac system
to different stimuli. While the advantages of higher tonic HRV have been repeatedly
shown in the literature [121], the desirability of phasic HRV changes (increase versus
decrease phasic HRV) is context-dependent [123]. Higher phasic HRV suppression (–the
autonomic stress response to prepare for fight-or-flight situations [124] has been linked
to higher levels of tonic HRV and phasic HRV post-stress, which are indicators of faster
recovery [125–128]. Therefore, researchers have highlighted its potential role as a protective
factor against stress [123,129,130]. However, when the stressor requires the engagement of
executive functioning [131], higher phasic HRV enhancement is preferred as it indicates
greater attentional resources and self-regulatory effort [132–134]. Interestingly, by looking
at participants’ performance under different levels of perceptual loads, Park et al. [123]
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observed that individuals with higher tonic HRV can exert regulatory effort (presence of
phasic HRV enhancement) and avoid making autonomic stress response (absence of phasic
HRV suppression) even under high loads where the task could be a potential stressor. In
contrast, individuals with lower tonic HRV experienced autonomic stress response (phasic
HRV enhancement) even in low loads condition, suggesting a tendency to appraise even
trivial challenges as stressors. Given the significant interaction between tonic and phasic
HRV and its potential to provide insight on individual differences in regulatory processes,
future studies should investigate not only HRV at rest but also HRV reactivity (changes
between rest and event) and HRV recovery (changes between event and post-event) [135].

16. HRV and Psychopathology

Research focusing on the relationship between HRV and mood disorders suggests
that, in general, a lower vagal tone (and thus, a lower HRV) is associated with negative
outcomes [136]. Short-term HRV indices such has RMSSD, SDANN, HF and non-linear
measures such as MSE were found to be significantly reduced in patients with depres-
sion [14,137,138] and negatively correlated with symptom severity [139]. Short-term HRV
indices are also lower (and correlated with symptoms’ severity [140]) in anxiety disorders,
including generalized anxiety disorder (GAD), social anxiety disorder, panic disorder
and post-traumatic stress disorder [11,12,14,17,124,141–147] Additionally, depression with
comorbid anxiety has been shown to be associated with greater reduction in HRV as
compared to depression alone [15]. In this context, lower HRV has been associated with
changes in the sympathovagal balance in favor of a sympathetic predominance, which may
subsequently increase cardiovascular risk in these pathologies [146]. Bipolar disorder is
also associated with a decreased HRV across a variety of HRV indices, including RMSSD,
pNN50, SDNN, HF, LF, and SampEn [148–151]. A similar pattern would be expected
with borderline personality disorder, given the shared physiopsychological mechanisms
with bipolar disorder [152]. However, the few studies currently report mixed findings
(e.g., a higher HF in BPD patients [153]) vs. lower RSA [154]). Research also suggests
a lower HRV with reduced RMSSD, HF, ApEn and SampEn in patients suffering from
schizophrenia [149,155–158], and a correlation with symptoms such as apathy, withdrawal
and delusions [159], suggesting a relationship between psychotic symptoms and cardiac
autonomic function [149,160].

HRV has been presented as a useful clinical marker of psychopathology, in which
it represents the combined effect of parasympathetic inhibition as well as excessive sym-
pathetic activation, reflecting a sub-optimal adaptive response to external and internal
changes. Although the specific pathophysiological mechanisms underlying the associa-
tions between psychiatric conditions and HRV remain poorly understood, the majority of
studies observed significant relationships between the different pathologies and parasym-
pathetic parameters (such as HF and RMSSD, that are particularly sensitive to short-term
HR changes). This has led researchers to propose that a restrained vagal activity could be a
transdiagnostic biomarker across psychiatric disorders [17,155,161,162]. This hypothesis is
further supported by the observation of worsening parasympathetic tone during the chronic
course of psychiatric conditions [155,163], and parallel improvements in parasympathetic
parameters as symptom severity reduces over the course of treatment [14,145,164,165].

17. HRV as a Therapeutic Target

With the progressive establishment of HRV as a convenient peripheral (and corre-
lational) index of self-regulatory abilities [104,166], its usage in applied settings grew.
Recently, the psychophysiological cardiac coherence model has been introduced to pro-
mote training to enhance HRV. This model emphasizes the importance of having reciprocal
interactions and coherence between the regulatory systems to maximize the adaptability to
environmental demands [167,168]. Cardiac coherence refers to a stable state of increased
synchrony between the rhythms of different oscillatory systems, typically HR, respiration
and blood pressure. In practice, this coherent state is reflected by a more ordered and sine
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wave-like HRV waveform, oscillating at a frequency approximating 0.1 Hz, the frequency
at which the phase synchrony of HR and respiration occurs [169,170].

According to the model, cardiac coherence can be induced by breathing at a steady
pace approximating 0.1 Hz (i.e., six breaths per minute). Such deliberate slow-paced
breathing (also referred to as “deep breathing,” [170]) maximizes both baroreflex sensitivity
and RSA on HR, giving rise to a high-amplitude oscillation of HR [171,172]. According
to [172], regular breathing exercising techniques help to continuously stimulate and exer-
cise autonomic reflexes, especially the baroreflex. In fact, deep breathing has been shown
to produce significant improvements in cognitive and emotional functioning [167] and dif-
ferent dimensions of health and well-being, such as pain [173], stress and anxiety [174,175],
depression [176–178], post-traumatic stress disorder [179], or attention-deficit hyperactivity
disorder [180]. Different mechanisms have been proposed to explain the therapeutic effects
of HRV-focused biofeedback [181], but further investigations are needed to understand,
clarify and validate its potential clinical utility.

18. HRV in Practice: A Tutorial Using Python

Over the years, HRV has become a convenient and reliable marker to detect ANS
and cardiovascular abnormalities. However, due to the complex mathematical models
and theories of signal processing involved, there is a practical barrier for users without
the prior technical knowledge, such as many psychology students and researchers, to
effectively understand, interpret, produce and reproduce HRV indices. In the following,
we will present a step-by-step guide to obtain HRV indices using NeuroKit2 [182]), an
open-source Python package that is designed to be friendly to both novice and advanced
programmers. Instructions on how to get Python and NeuroKit2 up and running can
be found at https://neurokit2.readthedocs.io/en/latest/installation.html (accessed on
3 May 2021). Note that other open-source software such as HeartPy [183], pyHRV [184],
hrv [185] and GUI-based software such as KUBIOS© [186], and BIOPAC Acqknowledge
software (https://www.biopac.com) (accessed on 3 May 2021) are other alternatives for
HRV analysis.

19. Data Preprocessing

Cardiac activity data stored on the disk can be loaded using functions appropriate
to the format (e.g., read_bitalino() or read_acqknowledge()). For the purposes of this tutorial,
we will download and use an example dataset available in NeuroKit2, which consists of
recordings of four participants during 8 min of resting state. Their cardiac activity (ECG)
and respiration (RSP) signals were recorded and downsampled to 200 Hz for the purpose
of this demonstration (note that higher sampling rates are recommended to maximize the
precision of NN intervals).

The data from the first participant is then extracted, stored into an object, and two of its
variables (the ECG and RSP signals) are passed to a preprocessing function that will clean
the signals and, importantly, find the location of R peaks and respiration cycles. Details
about the options and algorithms used are available in the package’s documentation.

# Load data

import neurokit2 as nk

data_all = nk.data(‘https://raw.githubusercontent.com/neuropsychology/NeuroKit/dev/data/bio_resting_8min_
200hz.json’)

data_participant = data_all[“S01”] # Access the data of the first participant

# Clean signal

clean_signals, info = nk.bio_process(ecg=data_participant[“ECG”],

rsp=data_participant[“RSP”],

https://neurokit2.readthedocs.io/en/latest/installation.html
https://www.biopac.com
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sampling_rate=200)

# Show the location of the fist 5 R-peaks

info[“ECG_R_Peaks”][0:5]

## array([165, 345, 506, 672, 838])

The bio_process() function allows simultaneous processing of different signals using
signal-specific pipelines. For instance, for ECG signals, the steps involve minimizing
noise in the data, removing artifacts due to environmental or biological sources, as well as
extracting all potential peaks (e.g., R-peaks) in the signal before removing peaks that are
not of interest (i.e., ectopic peaks).

NeuroKit2 offers flexibility in choosing different processing methods. For this tutorial,
we will use the bio_process() function which allows for less customization of the pipeline
and relies on sensible default parameters for performing signal-specific operations (i.e.,
cleaning, peak extraction, rate computation). Alternatively, users can customize their own
processing pipeline following the tutorial available on the documentation of NeuroKit2.

20. HRV Analysis

HRV indices of different domains can then be obtained using specific functions such
as hrv_time(), hrv_frequency(), hrv_nonlinear() and hrv_rsa(), to which the list of R-peaks
location, the sampling rate (200 Hz in this example), and respiration phases (specifically for
hrv_rsa()) have to be provided. However, all the available indices can also be computed at
once using hrv(), alongside a figure combining useful diagnostic plots (such as the power
spectral density and the Poincaré plot) when the show argument is set to True. Table 2 shows
an example of the indices output and Figure 1 shows an example of the diagnostic plot.

# Compute all HRV indices and show plots

nk.hrv(info, sampling_rate=200, show=True)

Table 2. The hrv() function returns a dataframe containing all the indices as columns.

HRV_RMSSD HRV_MeanNN . . . HRV_DFA HRV_CorrDim

61.74 820.75 . . . 0.66 1.40
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21. Multiple Participants Analysis

As the function(s) to compute HRV indices for a participant return a single row
dataframe, the process can easily scale up for studies that contain multiple participants
by, essentially, binding all the rows together into one dataframe. In the example below,
we will demonstrate how to loop through participants, compute HRV indices at each
turn and append the data. For more complex or tailored analyses, it is within such loops
that additional participant-specific operations can be inserted (e.g., apply specific data
preprocessing steps or extract other types of information).

# Load data and create list of participants

data_all = nk.data(‘https://raw.githubusercontent.com/neuropsychology/NeuroKit/dev/data/bio_resting_8min
_200hz.json’)

list_participants = [“S01”, “S02”, “S03”, “S04”]

# Loop through participants’ names

for participant in list_participants:

# Get data of current participant

data_participant = data_all[participant]

# Clean signal

clean_signals, info = nk.bio_process(ecg=data_participant[“ECG”],

rsp=data_participant[“RSP”],

sampling_rate=200)

# Compute HRV indices

results = nk.hrv(info, sampling_rate=200, show=False)

# Add “Participant” column

results[“Participant”] = participant

# If participant is not the first, then append the data

if participant == “S01”:

results_all = results

else:

results_all = results_all.append(results)

22. Conclusions

Throughthe above literature review related to HRV and its applications in psychology
and neuroscience, we demonstrated how HRV analysis can be efficiently performed using
NeuroKit2 by computing the indices, creating useful diagnostic plots, as well as by aggre-
gating the indices across multiple subjects. We hope that helping to provide psychologists
with a comprehensive list of HRV indices will help to shift the focus from physiological
preprocessing and programming technicalities towards the interpretation of the results
involving these indices as well as the critical discussion of their limitations.

Given the amount of existing HRV indices, in addition to the lack of clarity regarding
their associated physiological mechanisms, psychophysiological researchers might find
it difficult to pinpoint which ones to focus on. Time-domain indices have a long history
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of usage in HRV research, with RMSSD being arguably the most robust measure of vagal
tone [44,135]. While these statistical indices are quick to compute, it is crucial to carefully
preprocess the HR signal before performing HRV analysis, as their accuracy can be easily
affected by outliers and artefacts. In cases of noisy signal, geometrical approaches such
as the HTI might be a more viable alternative. Frequency-domain indices may provide
greater precision in quantifying autonomic control mechanisms. Among the spectral
measures, the relationship between HF and vagal tone has been the most well-established.
However, given its sensitivity to processing parameters chosen, it is recommended that HF
is interpreted in conjunction with other time-domain indices that are thought to similarly
reflect vagal tone (e.g., RMSSD, pNN50, see [135]). Controlled breathing protocols can also
be used to minimize variable respiratory influences on HF across different populations
(e.g., athletes have slower respiratory rates, children breathe faster, [44,187]). Additionally,
although the use of LF/HF has also been quite popular amongst researchers, definitive
conclusions about sympathovagal balance based solely on this parameter are ill-advised
due to the unclear sources of LF.

While both time- and frequency-domain indices are correlated with non-linear indices,
the latter are more reflective of the general complexity of HR signal rather than any specific
underlying physiological mechanism [188]. However, theoretical and methodological
concerns related to their usage have been raised. Firstly, these indices are very sensitive to
the parameters chosen (e.g., window length), with unclear guidelines, rules, or standards
for their (optimal) selection. Secondly, while some studies attest to the clinical utility of non-
linear HRV dynamics when applied longitudinally (i.e., ability to differentiate progression
of cardiovascular diseases), it is not yet clear why certain non-linear methods are better
at distinguishing between pathologies. Apart from methods covered in this paper, other
methods such as largest Lyapunov exponent (LLE), Hurst exponent (HE) and symbolic
dynamics have also gained wide acceptance for assessing various complex systems, but
their applications in HRV are substantially less popular than the aforementioned non-linear
indices [67]. All in all, it is recommended to treat these indices as complementary measures
to traditional linear indices [135,188].

Finally, other considerations influence the choice and interpretation of HRV indices,
such as recording length, quality of the recorded signal, breathing methods and participant
variables (e.g., age, gender, cardio-related medication, etc.) [18,189]. To facilitate the
comparisons of HRV-related results across populations and studies, past studies have
attempted to quantify the reference values for HRV measures of different recording lengths
(e.g., see [190,191] for long-term recordings; [192,193] for short-term recordings), of different
populations (e.g., [194] for healthy school-aged children; [193] for healthy adults) and/or
across different demographic characteristics (e.g., [195,196]). Related to this, researchers
have provided a comprehensive list of practical recommendations [188] to improve the use
of standardized protocols for HRV research. All in all, the focus of the current paper is
aimed at providing an overview of HRV indices, their usage in psychological research, and
a practical demonstration on how to obtain these indices using NeuroKit2.
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