Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations

Abstract

There has been an increasing trend towards the use of complexity analysis in quantifying neural activity measured by electroencephalography (EEG) signals. On top of revealing complex neuronal processes of the brain that may not be possible with linear approaches, EEG complexity measures have also demonstrated their potential as biomarkers of psychopathology such as depression and schizophrenia. Unfortunately, the opacity of algorithms and descriptions originating from mathematical concepts have made it difficult to understand what complexity is and how to draw consistent conclusions when applied within psychology and neuropsychiatry research. In this review, we provide an overview and entry-level explanation of existing EEG complexity measures, which can be broadly categorized as measures of predictability and regularity. We then synthesize complexity findings across different areas of psychological science, namely, in consciousness research, mood and anxiety disorders, schizophrenia, neurodevelopmental and neurodegenerative disorders, as well as changes across the lifespan, while addressing some theoretical and methodological issues underlying the discrepancies in the data. Finally, we present important considerations when choosing and interpreting these metrics.

Type
Publication
European Journal of Neuroscience
Tam Pham
Tam Pham
Research Assistant (2019-22)
Now: PhD Student (Macquarie)

I’m interested in suicide and interoception and I aspire to become a clinical psychologist.

Dominique Makowski
Dominique Makowski
Lecturer in Psychology

Trained as neuropsychologist and CBT psychotherapist, I am currently working as a lecturer at the University of Sussex, on the neuroscience of reality perception.